A Low-Power Radiation-Hardened Ka -Band CMOS Phased-Array Receiver for Small Satellite Constellation

This article introduces a low-power radiation-hardened <inline-formula> <tex-math notation="LaTeX">Ka</tex-math> </inline-formula>-band CMOS phased-array receiver for the low Earth orbit (LEO) small satellite communication system. As the available solar panel area l...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of solid-state circuits Vol. 59; no. 2; pp. 1 - 15
Main Authors Fu, Xi, You, Dongwon, Wang, Yun, Wang, Xiaolin, Fadila, Ashibir Aviat, Liu, Chenxin, Kato, Sena, Wang, Chun, Li, Zheng, Pang, Jian, Shirane, Atsushi, Okada, Kenichi
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article introduces a low-power radiation-hardened <inline-formula> <tex-math notation="LaTeX">Ka</tex-math> </inline-formula>-band CMOS phased-array receiver for the low Earth orbit (LEO) small satellite communication system. As the available solar panel area limits the power consumption of the receiver, a multi-coupling common-gate (CG) low noise amplifier (LNA) with current-sharing topology and built-in 180<inline-formula> <tex-math notation="LaTeX">^\circ</tex-math> </inline-formula> phase shifter is proposed in this work to solve the power issue. The multi-coupling LNA utilizes three coupling inductors to reduce the input matching impedance with a smaller input CMOS transistor size. After implementing the proposed technique, a single beamformer realized a 3.4-mW typical power consumption compared with the conventional works with 17.3-195-mW power consumption. The receiver with magnetic-tuning phase shifter (MTPS) has 0.06-dB/Mrad gain and 0.4<inline-formula> <tex-math notation="LaTeX">^\circ</tex-math> </inline-formula>/Mrad phase degradations and is the lowest reported root-mean-square phase and gain errors due to radiation. The proposed receiver achieves <inline-formula> <tex-math notation="LaTeX">-</tex-math> </inline-formula>22-dBm IIP3 with a 3.8-dB noise figure. The required on-chip area for each element is only 0.2 mm<inline-formula> <tex-math notation="LaTeX">^2</tex-math> </inline-formula>. In the over-the-air (OTA) measurement, digital video broadcasting-second generation extension (DVB-S2x) standard modulated signals of up to 256 amplitude phase shift keying (APSK) can be supported by the proposed large array modules. This work realizes <inline-formula> <tex-math notation="LaTeX">-</tex-math> </inline-formula>33.2-dB error vector magnitude (EVM) and 12.8-Gb/s link speed with 1.6-GHz channel bandwidth. The measured beam pattern can cover radiated angle from <inline-formula> <tex-math notation="LaTeX">-</tex-math> </inline-formula>50<inline-formula> <tex-math notation="LaTeX">^\circ</tex-math> </inline-formula> to <inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula>50<inline-formula> <tex-math notation="LaTeX">^\circ</tex-math> </inline-formula> with lower than <inline-formula> <tex-math notation="LaTeX">-</tex-math> </inline-formula>10-dBc sidelobe level. Because of the proposed multi-coupling LNA and MTPS, a low-power radiation-hardened phased-array receiver for small LEO satellites can be achieved in this work.
ISSN:0018-9200
1558-173X
DOI:10.1109/JSSC.2023.3308562