RETRACTED ARTICLE: Comparison of traditional and new generation DNA markers declares high genetic diversity and differentiated population structure of wild almond species

Wild almond species as sources of genetic variation may have crucial importance in breeding. A total of 389 accessions of 18 species have been analysed using inter-retrotransposon amplified polymorphism (IRAP), retrotransposon-microsatellite amplified polymorphism (REMAP), sequence-specific amplific...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 7; no. 1; pp. 1 - 17
Main Authors Sorkheh, Karim, Dehkordi, Mehrana Koohi, Ercisli, Sezai, Hegedus, Attila, Halász, Júlia
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 20.07.2017
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Wild almond species as sources of genetic variation may have crucial importance in breeding. A total of 389 accessions of 18 species have been analysed using inter-retrotransposon amplified polymorphism (IRAP), retrotransposon-microsatellite amplified polymorphism (REMAP), sequence-specific amplification polymorphism (S-SAP), amplified fragment length polymorphism (AFLP), inter simple sequence repeat (ISSR) and simple sequence repeats (SSR). Retrotransposon markers indicated the presence and movement of some Ty3- gypsy and Ty1- copia -elements in almond genome. Since transposable elements are associated with large-scale genome alterations, REMAP produced more reliable phylogenetic inferences than AFLP where homoplasy may affect clustering. In addition, high resolution melting (HRM) analysis was developed to detect SNPs. HRM analysis revealed 1:189 bp frequency of SNPs in exon positions, and the transition-to-transversion proportion was 1.84:1. The low transition bias suggests low methylation levels in almond genome. The polymorphic information content (PIC) was the highest for SSR markers, while SNPs had an average PIC of 0.59, which is close to the values of the rest of the markers. Huge genetic diversity, fragmented population structure and footprints of human selection was confirmed by merging information from all marker strategies. Considering time, cost and performance HRM can be a marker of choice in future studies of Prunus diversity.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-06084-4