Impact of AlSnO Back-Channel Layer on the Performance of AlSnO/InSnZnO Heterojunction Thin-Film Transistors
In this study, Al<inline-formula> <tex-math notation="LaTeX">_{\text{0.1}}</tex-math> </inline-formula>Sn<inline-formula> <tex-math notation="LaTeX">_{\text{0.9}}</tex-math> </inline-formula>O and Al<inline-formula> <tex-ma...
Saved in:
Published in | IEEE transactions on electron devices Vol. 71; no. 4; pp. 1 - 8 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this study, Al<inline-formula> <tex-math notation="LaTeX">_{\text{0.1}}</tex-math> </inline-formula>Sn<inline-formula> <tex-math notation="LaTeX">_{\text{0.9}}</tex-math> </inline-formula>O and Al<inline-formula> <tex-math notation="LaTeX">_{\text{0.3}}</tex-math> </inline-formula>Sn<inline-formula> <tex-math notation="LaTeX">_{\text{0.7}}</tex-math> </inline-formula>O are used as the back-channel materials of Al<inline-formula> <tex-math notation="LaTeX">_{\textit{x}}</tex-math> </inline-formula>Sn<inline-formula> <tex-math notation="LaTeX">_{\text{1}-\textit{x}}</tex-math> </inline-formula>O/InSnZnO heterojunction thin-film transistors (HTFTs) to investigate the effect of Al/Sn mole ratio on the electrical performance of Al<inline-formula> <tex-math notation="LaTeX">_{\textit{x}}</tex-math> </inline-formula>Sn<inline-formula> <tex-math notation="LaTeX">_{\text{1}-\textit{x}}</tex-math> </inline-formula>O/InSnZnO HTFTs. The Tauc plot, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) are used to characterize the bandgap energy, crystallinity, and oxygen vacancy content of the films. The results show that Al<inline-formula> <tex-math notation="LaTeX">_{\text{0.3}}</tex-math> </inline-formula>Sn<inline-formula> <tex-math notation="LaTeX">_{\text{0.7}}</tex-math> </inline-formula>O has a wider bandgap energy and fewer oxygen vacancies than Al<inline-formula> <tex-math notation="LaTeX">_\text{0.1}</tex-math> </inline-formula>Sn<inline-formula> <tex-math notation="LaTeX">_{\text{0.9}}</tex-math> </inline-formula>O. In addition, Al<inline-formula> <tex-math notation="LaTeX">_{\text{0.1}}</tex-math> </inline-formula>Sn<inline-formula> <tex-math notation="LaTeX">_{\text{0.9}}</tex-math> </inline-formula>O is polycrystalline, while Al<inline-formula> <tex-math notation="LaTeX">_{\text{0.3}}</tex-math> </inline-formula>Sn<inline-formula> <tex-math notation="LaTeX">_{\text{0.7}}</tex-math> </inline-formula>O is amorphous. This difference in crystallinity results in Al<inline-formula> <tex-math notation="LaTeX">_{\text{0.1}}</tex-math> </inline-formula>Sn<inline-formula> <tex-math notation="LaTeX">_{\text{0.9}}</tex-math> </inline-formula>O having higher electron mobility than Al<inline-formula> <tex-math notation="LaTeX">_{\text{0.3}}</tex-math> </inline-formula>Sn<inline-formula> <tex-math notation="LaTeX">_{\text{0.7}}</tex-math> </inline-formula>O. Therefore, Al<inline-formula> <tex-math notation="LaTeX">_{\text{0.1}}</tex-math> </inline-formula>Sn<inline-formula> <tex-math notation="LaTeX">_{\text{0.9}}</tex-math> </inline-formula>O/InSnZnO HTFT exhibits better electrical performance, including a higher field-effect mobility of 71.33 <inline-formula> <tex-math notation="LaTeX">\pm</tex-math> </inline-formula> 6.13 cm<inline-formula> <tex-math notation="LaTeX">^{\text{2}}</tex-math> </inline-formula>V<inline-formula> <tex-math notation="LaTeX">^{-\text{1}}</tex-math> </inline-formula>s<inline-formula> <tex-math notation="LaTeX">^{-\text{1}}</tex-math> </inline-formula> and a steeper subthreshold swing (SS) of 151.23 <inline-formula> <tex-math notation="LaTeX">\pm</tex-math> </inline-formula> 14.06 mV/dec. In contrast, Al<inline-formula> <tex-math notation="LaTeX">_{\text{0.3}}</tex-math> </inline-formula>Sn<inline-formula> <tex-math notation="LaTeX">_{\text{0.7}}</tex-math> </inline-formula>O/InSnZnO HTFT exhibits worse field-effect mobility and SS than InSnZnO TFT, which is used as a reference device in this study. These results suggest that the mobility of Al<inline-formula> <tex-math notation="LaTeX">_{\textit{x}}</tex-math> </inline-formula>Sn<inline-formula> <tex-math notation="LaTeX">_{\text{1}-\textit{x}}</tex-math> </inline-formula>O and the conduction band offset between Al<inline-formula> <tex-math notation="LaTeX">_{\textit{x}}</tex-math> </inline-formula>Sn<inline-formula> <tex-math notation="LaTeX">_{\text{1}-\textit{x}}</tex-math> </inline-formula>O and InSnZnO are important parameters to design high-performance HTFTs. Moreover, both Al<inline-formula> <tex-math notation="LaTeX">_{\text{0.1}}</tex-math> </inline-formula>Sn<inline-formula> <tex-math notation="LaTeX">_{\text{0.9}}</tex-math> </inline-formula>O/InSnZnO and Al<inline-formula> <tex-math notation="LaTeX">_{\text{0.3}}</tex-math> </inline-formula>Sn<inline-formula> <tex-math notation="LaTeX">_{\text{0.7}}</tex-math> </inline-formula>O/InSnZnO HTFTs exhibit relatively insignificant threshold voltage shift compared to InSnZnO TFT during negative bias illumination stress (NBIS). This indicates that the present Al<inline-formula> <tex-math notation="LaTeX">_{\textit{x}}</tex-math> </inline-formula>Sn<inline-formula> <tex-math notation="LaTeX">_{\text{1}-\textit{x}}</tex-math> </inline-formula>O back-channel design is helpful to enhance the stability of the HTFTs. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2024.3362759 |