DWW: Robust Deep Wavelet-Domain Watermarking With Enhanced Frequency Mask

This letter concentrates on the challenges of deep learning-based robust image watermarking against print-scanning, print-camera, and screen-shooting attacks for "physical channel transmission". Given the excellent performance demonstrated by wavelet domain watermarking, in this paper, we...

Full description

Saved in:
Bibliographic Details
Published inIEEE signal processing letters Vol. 31; pp. 3074 - 3078
Main Authors Tang, Shiyuan, Ni, Jiangqun, Su, Wenkang, Zhang, Yulin
Format Journal Article
LanguageEnglish
Published New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This letter concentrates on the challenges of deep learning-based robust image watermarking against print-scanning, print-camera, and screen-shooting attacks for "physical channel transmission". Given the excellent performance demonstrated by wavelet domain watermarking, in this paper, we incorporate the wavelet integrated convolutional neural networks (CNNs) and propose a Deep Wavelet-domain Watermarking (DWW) model, which is dedicated to embedding watermarks in the wavelet domain rather than the spatial domain of the previous arts. In addition, a frequency-domain enhanced mask loss is developed to increase the loss weight in the high-frequency regions of the image during back-propagation, thereby encouraging the model to embed the message in low-frequency components with priority so as to improve the robustness performance. Experiment results show that the proposed DWW consistently outperforms other state-of-the-art (SOTA) schemes by a clear margin in terms of embedding capacity, imperceptibility, and robustness.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2024.3490399