Investigation of Prepulse of SiC Drift Step Recovery Diode in Fast Interruption Process

The output pulse voltage with a front of high dV/dt is an important feature in the application of silicon carbide (SiC) drift step recovery diodes (DSRDs). However, the presence of prepulse leads to a deformation of the pulse front, reducing its mean rising rate. The influence factors and mechanisms...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electron devices Vol. 71; no. 5; pp. 3102 - 3108
Main Authors Yan, Xiaoxue, Liang, Lin, Yang, Zewei, Shang, Hai
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The output pulse voltage with a front of high dV/dt is an important feature in the application of silicon carbide (SiC) drift step recovery diodes (DSRDs). However, the presence of prepulse leads to a deformation of the pulse front, reducing its mean rising rate. The influence factors and mechanisms of prepulse of 4H-SiC DSRD are investigated in this article. <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula> is proposed to evaluate the prepulse characteristics, which is defined as the ratio of the prepulse amplitude (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {pre}}{)} </tex-math></inline-formula> to the peak output voltage (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {peak}}{)} </tex-math></inline-formula>. A good output characteristic should have a low <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula>. The experimental results indicate that the device area (<inline-formula> <tex-math notation="LaTeX">{S}{)} </tex-math></inline-formula>, power supply voltage (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {cc}}{)} </tex-math></inline-formula>, and load resistance (<inline-formula> <tex-math notation="LaTeX">{R}_{\text {load}}{)} </tex-math></inline-formula> have a significant impact on the prepulse. Through Sentaurus TCAD simulation, the effects of the three factors on prepulse were further obtained over a larger range of variations. The simulation results agree with the experimental data well. The results indicate that <inline-formula> <tex-math notation="LaTeX">{V}_{\text {pre}} </tex-math></inline-formula> does not depend on <inline-formula> <tex-math notation="LaTeX">{V}_{\text {peak}} </tex-math></inline-formula>. Increasing <inline-formula> <tex-math notation="LaTeX">{S} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">{R}_{\text {load}} </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">{V}_{\text {cc}} </tex-math></inline-formula> can all reduce <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula>, but only an increase in <inline-formula> <tex-math notation="LaTeX">{S} </tex-math></inline-formula> can reduce <inline-formula> <tex-math notation="LaTeX">{V}_{\text {pre}} </tex-math></inline-formula> among the three factors. From the perspective of prepulse characteristics, SiC DSRDs are more suitable for application at higher voltage conditions rather than lower voltage, as there is often a lower <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula> under higher voltage conditions.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2024.3379959