Quantifying critical N dilution curves across G × E × M effects for potato using a partially-pooled Bayesian hierarchical method

Multiple critical N dilution curves [CNDCs] have been previously developed for potato; however, attempts to directly compare differences in CNDCs across genotype [G], environment [E], and management [M] interactions have been confounded by non-uniform statistical methods, biased experimental data, a...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of agronomy Vol. 144; p. 126744
Main Authors Bohman, Brian J., Culshaw-Maurer, Michael J., Ben Abdallah, Feriel, Giletto, Claudia, Bélanger, Gilles, Fernández, Fabián G., Miao, Yuxin, Mulla, David J., Rosen, Carl J.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multiple critical N dilution curves [CNDCs] have been previously developed for potato; however, attempts to directly compare differences in CNDCs across genotype [G], environment [E], and management [M] interactions have been confounded by non-uniform statistical methods, biased experimental data, and lack of proper quantification of uncertainty in the critical N concentration [%Nc]. This study implements a partially-pooled Bayesian hierarchical method to develop CNDCs for previously published and newly reported experimental data, systematically evaluates the difference in %Nc [∆%Nc] across G × E × M effects, and directly compare CNDCs from the Bayesian framework to CNDCs from conventional statistical methods. The partially-pooled Bayesian hierarchical method implemented in this study has the advantage of being less susceptible to inferential bias at the level of individual G × E × M interactions compared to alternative statistical methods that result from insufficient quantity and quality of experimental datasets (e.g., unbalanced distribution of N limiting and non-N limiting observations). This method also allows for a direct statistical comparison of differences in %Nc across levels of the G × E × M interactions. Where found to be significant, ∆%Nc was hypothesized to be related to variation in the timing of tuber initiation (e.g., maturity class) and the relative rate of tuber bulking (e.g., planting density) across G x E × M interactions. In addition to using the median value for %Nc (i.e., CNDC), the lower and upper boundary values for the credible region (i.e., CNDClo and CNDCup) derived using the Bayesian framework should be used in calculation of N nutrition index (and other calculations) to account for uncertainty in %Nc. Overall, this study provides additional evidence that%Nc is dependent upon G × E × M interactions; therefore, evaluation of crop N status or N use efficiency must account for variation in %Nc across G × E × M interactions. •Critical N dilution curves [CNDCs] for potato are subject to G x E x M effects.•Bayesian methods can quantify uncertainty in critical N concentration [%Nc].•Partial pooling Bayesian method enables direct comparison of G x E x M effects.•Variation in %Nc for potato due to tuber initiation timing and tuber bulking rate.•N use efficiency and N nutrition index depend on %Nc variability and uncertainty.
AbstractList Multiple critical N dilution curves [CNDCs] have been previously developed for potato; however, attempts to directly compare differences in CNDCs across genotype [G], environment [E], and management [M] interactions have been confounded by non-uniform statistical methods, biased experimental data, and lack of proper quantification of uncertainty in the critical N concentration [%Nc]. This study implements a partially-pooled Bayesian hierarchical method to develop CNDCs for previously published and newly reported experimental data, systematically evaluates the difference in %Nc [∆%Nc] across G × E × M effects, and directly compare CNDCs from the Bayesian framework to CNDCs from conventional statistical methods. The partially-pooled Bayesian hierarchical method implemented in this study has the advantage of being less susceptible to inferential bias at the level of individual G × E × M interactions compared to alternative statistical methods that result from insufficient quantity and quality of experimental datasets (e.g., unbalanced distribution of N limiting and non-N limiting observations). This method also allows for a direct statistical comparison of differences in %Nc across levels of the G × E × M interactions. Where found to be significant, ∆%Nc was hypothesized to be related to variation in the timing of tuber initiation (e.g., maturity class) and the relative rate of tuber bulking (e.g., planting density) across G x E × M interactions. In addition to using the median value for %Nc (i.e., CNDC), the lower and upper boundary values for the credible region (i.e., CNDCₗₒ and CNDCᵤₚ) derived using the Bayesian framework should be used in calculation of N nutrition index (and other calculations) to account for uncertainty in %Nc. Overall, this study provides additional evidence that%Nc is dependent upon G × E × M interactions; therefore, evaluation of crop N status or N use efficiency must account for variation in %Nc across G × E × M interactions.
Multiple critical N dilution curves [CNDCs] have been previously developed for potato; however, attempts to directly compare differences in CNDCs across genotype [G], environment [E], and management [M] interactions have been confounded by non-uniform statistical methods, biased experimental data, and lack of proper quantification of uncertainty in the critical N concentration [%Nc]. This study implements a partially-pooled Bayesian hierarchical method to develop CNDCs for previously published and newly reported experimental data, systematically evaluates the difference in %Nc [∆%Nc] across G × E × M effects, and directly compare CNDCs from the Bayesian framework to CNDCs from conventional statistical methods. The partially-pooled Bayesian hierarchical method implemented in this study has the advantage of being less susceptible to inferential bias at the level of individual G × E × M interactions compared to alternative statistical methods that result from insufficient quantity and quality of experimental datasets (e.g., unbalanced distribution of N limiting and non-N limiting observations). This method also allows for a direct statistical comparison of differences in %Nc across levels of the G × E × M interactions. Where found to be significant, ∆%Nc was hypothesized to be related to variation in the timing of tuber initiation (e.g., maturity class) and the relative rate of tuber bulking (e.g., planting density) across G x E × M interactions. In addition to using the median value for %Nc (i.e., CNDC), the lower and upper boundary values for the credible region (i.e., CNDClo and CNDCup) derived using the Bayesian framework should be used in calculation of N nutrition index (and other calculations) to account for uncertainty in %Nc. Overall, this study provides additional evidence that%Nc is dependent upon G × E × M interactions; therefore, evaluation of crop N status or N use efficiency must account for variation in %Nc across G × E × M interactions. •Critical N dilution curves [CNDCs] for potato are subject to G x E x M effects.•Bayesian methods can quantify uncertainty in critical N concentration [%Nc].•Partial pooling Bayesian method enables direct comparison of G x E x M effects.•Variation in %Nc for potato due to tuber initiation timing and tuber bulking rate.•N use efficiency and N nutrition index depend on %Nc variability and uncertainty.
ArticleNumber 126744
Author Rosen, Carl J.
Ben Abdallah, Feriel
Giletto, Claudia
Miao, Yuxin
Bélanger, Gilles
Mulla, David J.
Culshaw-Maurer, Michael J.
Bohman, Brian J.
Fernández, Fabián G.
Author_xml – sequence: 1
  givenname: Brian J.
  surname: Bohman
  fullname: Bohman, Brian J.
  email: bohm0072@umn.edu
  organization: Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN 55108, USA
– sequence: 2
  givenname: Michael J.
  surname: Culshaw-Maurer
  fullname: Culshaw-Maurer, Michael J.
  organization: CyVerse, University of Arizona, Tuscon, AZ, USA
– sequence: 3
  givenname: Feriel
  surname: Ben Abdallah
  fullname: Ben Abdallah, Feriel
  organization: Productions in Agriculture Department, Crop Production Unit, Walloon Agricultural Research Centre (CRA-W), Gembloux, Belgium
– sequence: 4
  givenname: Claudia
  surname: Giletto
  fullname: Giletto, Claudia
  organization: Unidad Integrada Balcarce, Facultad de Ciencias Agrarias (UNMdP)-INTA Balcarce, Ruta 226km 73,5, 7620 Balcarce, Buenos Aires, Argentina
– sequence: 5
  givenname: Gilles
  surname: Bélanger
  fullname: Bélanger, Gilles
  organization: Science and Technology Branch, Agriculture and Agri-Food Canada, Québec, Canada
– sequence: 6
  givenname: Fabián G.
  surname: Fernández
  fullname: Fernández, Fabián G.
  organization: Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN 55108, USA
– sequence: 7
  givenname: Yuxin
  surname: Miao
  fullname: Miao, Yuxin
  organization: Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN 55108, USA
– sequence: 8
  givenname: David J.
  surname: Mulla
  fullname: Mulla, David J.
  organization: Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN 55108, USA
– sequence: 9
  givenname: Carl J.
  surname: Rosen
  fullname: Rosen, Carl J.
  organization: Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN 55108, USA
BookMark eNp9kLFuFDEQhi0UJJLAA9C5pNmLvd61b0UFUUiQAggpqa05e8z55FsvtjfS9bxD2jxL8mL4clQUqWaK-f7R_52QozGOSMh7zhaccXm2WeAGFi1rxYK3UnXdK3LMl0o0Sgh-VHcuecME42_ISc4bxtiy7btj8ufnDGPxbufHX9QkX7yBQL9T68NcfBypmdMdZgomxZzpJX26pxePD0_3jw_fKDqHpmTqYqJTLFAinfM-COgEqXgIYddMMQa09DPsMHsY6dpjgmTWz4-2WNbRviWvHYSM7_7NU3L75eLm_Kq5_nH59fzTdWPari-NlQK4GGx9a8CsGBiOTK5sL1wvnWNMdgNbLpVyDgbF-xVysNJ0TA3KDrgSp-TDIXdK8feMueitzwZDgBHjnLVou5b1QipVT9Xh9Ll3QqeNrwWrkZLAB82Z3nvXG1296713ffBeSf4fOSW_hbR7kfl4YLC2v6uCdDYeR4PWp2pY2-hfoP8C0NuiFQ
CitedBy_id crossref_primary_10_1016_j_fcr_2024_109713
crossref_primary_10_3390_agronomy14112653
crossref_primary_10_1016_j_eja_2024_127483
crossref_primary_10_1016_j_fcr_2024_109492
crossref_primary_10_1016_j_eja_2023_127026
crossref_primary_10_1007_s12230_025_09984_8
crossref_primary_10_1016_j_cj_2025_01_009
crossref_primary_10_1016_j_eja_2024_127397
crossref_primary_10_1016_j_eja_2023_127079
crossref_primary_10_1007_s11540_023_09644_6
Cites_doi 10.1038/s41597-022-01395-2
10.1007/BF02853657
10.32614/RJ-2018-017
10.1175/JCLI-D-16-0758.1
10.1016/j.fcr.2014.08.005
10.1098/rstb.1977.0140
10.1016/j.agrformet.2017.03.012
10.2134/agronj2018.05.0350
10.4236/ajps.2015.619306
10.2307/2532087
10.1214/20-BA1221
10.1023/A:1004783431055
10.2134/agronj1981.00021962007300050013x
10.1037/met0000275
10.1016/j.eja.2021.126380
10.3390/rs13163322
10.1007/BF02365158
10.3390/agronomy11020255
10.1017/S0021859600062651
10.1016/j.eja.2020.126202
10.3390/foods9030352
10.1007/s11540-016-9331-y
10.1007/BF02853925
10.1007/s13593-019-0570-6
10.1016/j.eja.2010.01.005
10.1007/BF02884344
10.1017/S0021859600046359
10.2134/agronj1986.00021962007800020010x
10.2134/agronj1998.00021962009000010003x
10.1016/j.eja.2022.126568
10.1093/oxfordjournals.aob.a086875
10.13031/2013.35914
10.1071/FP17303
10.2134/agronj2004.1131
10.3389/fpls.2019.00300
10.2134/agronj2017.02.0112
10.1016/j.eja.2021.126315
10.1007/BF02198111
10.1002/csc2.20297
10.1016/j.fcr.2014.05.006
10.18637/jss.v080.i01
10.1093/oxfordjournals.aob.a088044
10.1007/BF02874766
10.1007/978-3-030-39157-7_3
10.18637/jss.v076.i01
10.3390/plants9101309
10.2134/agronj14.0402
10.1006/anbo.1994.1133
10.1016/j.eja.2006.10.001
10.1017/S0021859600028598
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.eja.2023.126744
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1873-7331
ExternalDocumentID 10_1016_j_eja_2023_126744
S1161030123000126
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPCBC
SSA
SSZ
T5K
UHS
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c245t-d63a139deffcacb0ac1e06bd53f56ff0064908877ffa9715be1ad6c40797d9eb3
IEDL.DBID .~1
ISSN 1161-0301
IngestDate Fri Aug 22 20:36:47 EDT 2025
Tue Jul 01 00:42:58 EDT 2025
Thu Apr 24 23:06:00 EDT 2025
Fri Feb 23 02:35:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords CNUtEC
E
G
NNI
Critical N concentration
NNIup
M
NPlant
EONR
Nitrogen use efficiency
Potato
CNDClo
Nc
W
Genotype-by-environment-by-management interactions
NUE
NNIlo
CNUC
Critical nitrogen dilution curve
Bayesian
CNDC
Nitrogen nutrition index
NUpE
NUtEc
CNDCup
NUtE
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-d63a139deffcacb0ac1e06bd53f56ff0064908877ffa9715be1ad6c40797d9eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3242053677
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3242053677
crossref_citationtrail_10_1016_j_eja_2023_126744
crossref_primary_10_1016_j_eja_2023_126744
elsevier_sciencedirect_doi_10_1016_j_eja_2023_126744
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationTitle European journal of agronomy
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bremner, Taha (bib16) 1966; 66
Stefaniak, Fitzcollins, Figueroa, Thompson, Schmitz Carley, Shannon (bib77) 2021; 11
Duchenne, Machet, Martin (bib26) 1997
Bates, D.M. 2010.
Stark, J.C., Thompson, A.L., Novy, R., 2020. Variety Selection and Management. In: Stark, J. C., Thornton, M., Nolte, P. (Eds.), Potato Production Systems. pp. 35–64.
Bélanger, Walsh, Richards, Milburn, Ziadi (bib10) 2001; 78
Rosen, C., J. Crants, B. Bohman, and M. McNearney. 2021. Effects of Banded Versus Broadcast Application of ESN, Turkey Manure, and Different Approaches to Measuring Plant N Status on Tuber Yield and Quality in Russet Burbank Potatoes. Reserach Reports – 2021. Fargo, ND: Minnesota Area II Potato Research and Promotion Council and Northern Plains Potato Growers Association. Retrieved from
Herrmann, Taube (bib41) 2004; 96
Makowski, Zhao, Ata-Ul-Karim, Lemaire (bib56) 2020
Lemaire, Gastal (bib51) 1997
Errebhi, Rosen, Gupta, Birong (bib28) 1998; 90
Ushey, K. 2021. renv: Project Environments. Retrieved from
Gastal, Lemaire, Durand (bib33) 2015
Rosen, C., M. Errebhi, J. Moncrief, S. Gupta, H.H. Cheng, and D. Birong. 1993. Nitrogen Fertilization Studies on Irrigated Potatoes: Nitrogen Use, Soil Nitrate Movement, and Petiole Sap Nitrate Analysis for Predicting Nitrogen Needs. Field Research in Soil Science – Soil Series #136. St. Paul, MN: University of Minnesota. Retrieved from
Benoit, Grant, Devine (bib13) 1986; 78
Franzen, D., A. Robinson, and C. Rosen. 2018. Fertilizing Potato in North Dakota. SF715. Fargo, ND: North Dakota State University. Retrieved from
Ben Abdallah, Olivier, Goffart, Minet (bib11) 2016; 59
Crants, J., C. Rosen, M. McNearney, and L. Sun. 2017. The Use of Chlorophyll Meters for Nitrogen Management in Potatoes. Research Reports – 2017. Fargo, ND: Minnesota Area II Potato Research and Promotion Council and Northern Plains Potato Growers Association. Retrieved from
Bürkner (bib18) 2018; 10
Bennett, Tibbitts, Cao (bib12) 1991; 68
Justes, Mary, Meynard, Machet, Thelier-Huche (bib47) 1994; 74
Vehtari, Gelman, Simpson, Carpenter, Bürkner (bib86) 2021; 16
Bohman, B.J., M. McNearney, J. Crants, and C.J. Rosen. 2020. A Novel Approach to Manage Nitrogen Fertilizer for Potato Production Using Remote Sensing. Research Reports – 2020. Fargo, ND: Minnesota Area II Potato Research and Promotion Council and Northern Plains Potato Growers Association. Retrieved from
(bib24) 2021
Horneck, Miller (bib42) 1998
Bélanger, Walsh, Richards, Milburn, Ziadi (bib9) 2001; 78
Fernández, Lemaire, Bélanger, Gastal, Makowski, Ciampitti (bib31) 2021; 131
Wright, J. 2002. Irrigation Scheduling Checkbook Method. BU-FO-01322. St. Paul, MN: University of Minnesota. Retrieved from
Schad, Betancourt, Vasishth (bib71) 2021; 26
R Core Team. 2021b. "stats": The R Stats Package. Retrieved from
Greenwood, Lemaire, Gosse, Cruz, Draycott, Neeteson (bib38) 1990; 66
Slater (bib73) 1968; 11
Gupta, S., and C.J. Rosen. 2019. Nitrogen Fertilization Rate and Cold-Induced Sweetening in Potato Tubers During Storage. Research Reports – 2019. Fargo, ND: Minnesota Area II Potato Research and Promotion Council and Northern Plains Potato Growers Association. Retrieved from
Ifenkwe, Allen (bib45) 1978; 91
St. Paul, MN: University of Minnesota. Retrieved from
Sun, N. 2017. Agronomic and Storage Factors Affecting Acrylamide Formation in Processed Potatoes. (Ph.D.). University of Minnesota, St. Paul, MN. Retrieved from
Gupta, S.K., J. Crants, M. McNearney, and C.J. Rosen. 2020. Evaluation of a Promising Minnesota Clone for N Response, Agronomic Traits & Storage Quality. Research Reports – 2020. Fargo, ND: Minnesota Area II Potato Research and Promotion Council and Northern Plains Potato Growers Association. Retrieved from
Li, Miao, Gupta, Rosen, Yuan, Wang, Wang, Huang (bib53) 2021; 13
Gelaro, McCarty, Suarez, Todling, Molod, Takacs, Randles, Darmenov, Bosilovich, Reichle, Wargan, Coy, Cullather, Draper, Akella, Buchard, Conaty, da Silva, Gu, Kim, Koster, Lucchesi, Merkova, Nielsen, Partyka, Pawson, Putman, Rienecker, Schubert, Sienkiewicz, Zhao (bib34) 2017; Volume 30
Sinclair, Muchow (bib74) 1999; 65
Porter, G. 2014. 201400091. USDA PVPO.
Carpenter, Gelman, Hoffman, Lee, Goodrich, Betancourt, Brubaker, Guo, Li, Riddell (bib19) 2017; 76
Greenwood, Neeteson, Draycott (bib37) 1986; 91
Monteith (bib59) 1977; 281
.
Kleinkopf, Westermann, Dwelle (bib49) 1981; 73
McElreath (bib57) 2020
Tiwari, Plett, Garnett, Chakrabarti, Singh (bib83) 2018; 45
Ciampitti, Fernandez, Tamagno, Zhao, Lemaire, Makowski (bib22) 2021; 123
Morris, Murrell, Beegle, Camberato, Ferguson, Grove, Ketterings, Kyveryga, Laboski, McGrath, Meisinger, Melkonian, Moebius-Clune, Nafziger, Osmond, Sawyer, Scharf, Smith, Spargo, van Es, Yang (bib61) 2018; 110
Thornton (bib82) 2020
CFIA. 2013. Bintje: Canadian Food Inspection Agency. Retrieved from
Lizana, Avila, Tolaba, Martinez (bib55) 2017; 239
Sun, Wang, Gupta, Rosen (bib79) 2019; 111
Fernandez, van Versendaal, Lacasa, Makowski, Lemaire, Ciampitti (bib30) 2022; 139
Rosen, C.J. 2018. Potato Fertilization on Irrigated Soils: University of Minnesota Extension. Retrieved from
Ewing, Struik (bib29) 1992; Volume 14
Giletto, Reussi Calvo, Sandaña, Echeverría, Bélanger (bib36) 2020
Barraclough, Howarth, Jones, Lopez-Bellido, Parmar, Shepherd, Hawkesford (bib5) 2010; 33
Ciampitti, van Versendaal, Rybecky, Lacasa, Fernandez, Makowski, Lemaire (bib21) 2022; 9
Bohman, Rosen, Mulla (bib15) 2021
Houlès, Guérif, Mary (bib44) 2007; 27
Plénet, Lemaire (bib62) 2000; 216
Jones, Michaels, Carley, Rosen, Shannon (bib46) 2021; 61
Rosen, C., D. Birong, and M. Zumwinkle. 1992. Nitrogen Fertilization Studies on Irrigated Potatoes: Nitrogen Use, Soil Nitrate Movement, and Petiole Sap Nitrate Analysis for Predicting Nitrogen Needs.
OSU. 2021. Potato Variety Identification and Ownership Table: Oregon State University – Oregon Seed Certification Service. Retrieved from
Bélanger, Walsh, Richards, Milburn, Ziadi (bib8) 2000; 77
Caviglia, Melchiori, Sadras (bib20) 2014; 168
Yao, Wang, Lemaire, Makowski, Cao, Liu, Liu, Liu, Zhu, Cao, Tang (bib88) 2021; 128
Steele, Scherer, Wright, Hopkins, Tuscherer, Wright (bib76) 2010; 26
Sun, Wang, Gupta, Rosen (bib80) 2020; 9
Weather Spark. 2021. Compare the Climate and Weather in Becker, Saint-Léonard, Balcarce, and Gembloux. Retrieved from
Plummer, M. 2019. Rjags: Bayesian Graphical Models Using Mcmc. Retrieved from
Lindstrom, Bates (bib54) 1990; 46
Sadras, Lemaire (bib70) 2014; 164
Bürkner (bib17) 2017; 80
Lemaire, Sinclair, Sadras, Bélanger (bib52) 2019; 39
Kim, Lee (bib48) 2019; 10
Thompson, A. 2013. 201300475. USDA PVPO.
Egel, D.S. 2017. Midwest Vegetable Production Guide for Commercial Growers.
Giletto, Echeverría (bib35) 2015; 06
Lemaire, Ciampitti (bib50) 2020; 9
Vander Zaag, Demagante, Ewing (bib85) 1990; 33
University of Minnesota Extension. Retrieved from
Allen, Scott (bib1) 1980; 94
AHDB. 2015. Charlotte: Agriculture and Horticulture Development Board. Retrieved from
Menzel (bib58) 1985; 55
Plummer, M. 2013. jags: Just Another Gibs Sampler. Retrieved from
USDA. 1997. United States Standards for Grades of Potatoes for Processing. Retrieved from
Horwitz, Chichilo, Reynolds (bib43) 1970
Morier, Cambouris, Chokmani (bib60) 2015; 107
Jones (10.1016/j.eja.2023.126744_bib46) 2021; 61
Kleinkopf (10.1016/j.eja.2023.126744_bib49) 1981; 73
Morris (10.1016/j.eja.2023.126744_bib61) 2018; 110
Bohman (10.1016/j.eja.2023.126744_bib15) 2021
Errebhi (10.1016/j.eja.2023.126744_bib28) 1998; 90
Lemaire (10.1016/j.eja.2023.126744_bib50) 2020; 9
Schad (10.1016/j.eja.2023.126744_bib71) 2021; 26
Herrmann (10.1016/j.eja.2023.126744_bib41) 2004; 96
Lizana (10.1016/j.eja.2023.126744_bib55) 2017; 239
Morier (10.1016/j.eja.2023.126744_bib60) 2015; 107
10.1016/j.eja.2023.126744_bib63
10.1016/j.eja.2023.126744_bib64
10.1016/j.eja.2023.126744_bib65
10.1016/j.eja.2023.126744_bib66
Steele (10.1016/j.eja.2023.126744_bib76) 2010; 26
10.1016/j.eja.2023.126744_bib23
10.1016/j.eja.2023.126744_bib67
Lemaire (10.1016/j.eja.2023.126744_bib51) 1997
10.1016/j.eja.2023.126744_bib68
10.1016/j.eja.2023.126744_bib25
10.1016/j.eja.2023.126744_bib69
Bélanger (10.1016/j.eja.2023.126744_bib8) 2000; 77
Greenwood (10.1016/j.eja.2023.126744_bib37) 1986; 91
Fernández (10.1016/j.eja.2023.126744_bib31) 2021; 131
McElreath (10.1016/j.eja.2023.126744_bib57) 2020
Yao (10.1016/j.eja.2023.126744_bib88) 2021; 128
Duchenne (10.1016/j.eja.2023.126744_bib26) 1997
Horwitz (10.1016/j.eja.2023.126744_bib43) 1970
Allen (10.1016/j.eja.2023.126744_bib1) 1980; 94
Plénet (10.1016/j.eja.2023.126744_bib62) 2000; 216
Caviglia (10.1016/j.eja.2023.126744_bib20) 2014; 168
Fernandez (10.1016/j.eja.2023.126744_bib30) 2022; 139
Bremner (10.1016/j.eja.2023.126744_bib16) 1966; 66
Carpenter (10.1016/j.eja.2023.126744_bib19) 2017; 76
Giletto (10.1016/j.eja.2023.126744_bib35) 2015; 06
10.1016/j.eja.2023.126744_bib14
Tiwari (10.1016/j.eja.2023.126744_bib83) 2018; 45
(10.1016/j.eja.2023.126744_bib24) 2021
Gastal (10.1016/j.eja.2023.126744_bib33) 2015
Sadras (10.1016/j.eja.2023.126744_bib70) 2014; 164
10.1016/j.eja.2023.126744_bib81
Bélanger (10.1016/j.eja.2023.126744_bib9) 2001; 78
Thornton (10.1016/j.eja.2023.126744_bib82) 2020
Benoit (10.1016/j.eja.2023.126744_bib13) 1986; 78
10.1016/j.eja.2023.126744_bib40
10.1016/j.eja.2023.126744_bib84
Ewing (10.1016/j.eja.2023.126744_bib29) 1992; Volume 14
Horneck (10.1016/j.eja.2023.126744_bib42) 1998
Lemaire (10.1016/j.eja.2023.126744_bib52) 2019; 39
Menzel (10.1016/j.eja.2023.126744_bib58) 1985; 55
10.1016/j.eja.2023.126744_bib87
Bürkner (10.1016/j.eja.2023.126744_bib18) 2018; 10
Monteith (10.1016/j.eja.2023.126744_bib59) 1977; 281
Bürkner (10.1016/j.eja.2023.126744_bib17) 2017; 80
10.1016/j.eja.2023.126744_bib39
Bennett (10.1016/j.eja.2023.126744_bib12) 1991; 68
Houlès (10.1016/j.eja.2023.126744_bib44) 2007; 27
Ben Abdallah (10.1016/j.eja.2023.126744_bib11) 2016; 59
Makowski (10.1016/j.eja.2023.126744_bib56) 2020
Vander Zaag (10.1016/j.eja.2023.126744_bib85) 1990; 33
Lindstrom (10.1016/j.eja.2023.126744_bib54) 1990; 46
Ciampitti (10.1016/j.eja.2023.126744_bib21) 2022; 9
Greenwood (10.1016/j.eja.2023.126744_bib38) 1990; 66
Bélanger (10.1016/j.eja.2023.126744_bib10) 2001; 78
Ifenkwe (10.1016/j.eja.2023.126744_bib45) 1978; 91
Gelaro (10.1016/j.eja.2023.126744_bib34) 2017; Volume 30
Slater (10.1016/j.eja.2023.126744_bib73) 1968; 11
Ciampitti (10.1016/j.eja.2023.126744_bib22) 2021; 123
10.1016/j.eja.2023.126744_bib72
Kim (10.1016/j.eja.2023.126744_bib48) 2019; 10
Justes (10.1016/j.eja.2023.126744_bib47) 1994; 74
10.1016/j.eja.2023.126744_bib75
10.1016/j.eja.2023.126744_bib32
Giletto (10.1016/j.eja.2023.126744_bib36) 2020
10.1016/j.eja.2023.126744_bib78
Vehtari (10.1016/j.eja.2023.126744_bib86) 2021; 16
Sinclair (10.1016/j.eja.2023.126744_bib74) 1999; 65
10.1016/j.eja.2023.126744_bib27
10.1016/j.eja.2023.126744_bib2
Li (10.1016/j.eja.2023.126744_bib53) 2021; 13
Barraclough (10.1016/j.eja.2023.126744_bib5) 2010; 33
Sun (10.1016/j.eja.2023.126744_bib79) 2019; 111
Stefaniak (10.1016/j.eja.2023.126744_bib77) 2021; 11
Sun (10.1016/j.eja.2023.126744_bib80) 2020; 9
10.1016/j.eja.2023.126744_bib7
10.1016/j.eja.2023.126744_bib6
10.1016/j.eja.2023.126744_bib3
10.1016/j.eja.2023.126744_bib4
References_xml – volume: 9
  start-page: 277
  year: 2022
  ident: bib21
  article-title: A global dataset to parametrize critical nitrogen dilution curves for major crop species
  publication-title: Sci. Data
– volume: 139
  year: 2022
  ident: bib30
  article-title: Dataset characteristics for the determination of critical nitrogen dilution curves: from past to new guidelines
  publication-title: Eur. J. Agron.
– volume: 78
  start-page: 109
  year: 2001
  end-page: 117
  ident: bib10
  article-title: Tuber growth and biomass partitioning of two potato cultivars grown under different N fertilization rates with and without irrigation
  publication-title: Am. J. Potato Res.
– volume: 61
  start-page: 878
  year: 2021
  end-page: 895
  ident: bib46
  article-title: Nitrogen uptake and utilization in advanced fresh-market red potato breeding lines
  publication-title: Crop Sci.
– reference: Bohman, B.J., M. McNearney, J. Crants, and C.J. Rosen. 2020. A Novel Approach to Manage Nitrogen Fertilizer for Potato Production Using Remote Sensing. Research Reports – 2020. Fargo, ND: Minnesota Area II Potato Research and Promotion Council and Northern Plains Potato Growers Association. Retrieved from 〈
– volume: 107
  start-page: 1295
  year: 2015
  end-page: 1309
  ident: bib60
  article-title: In-season nitrogen status assessment and yield estimation using hyperspectral vegetation indices in a potato crop
  publication-title: Agron. J.
– volume: 26
  start-page: 103
  year: 2021
  end-page: 126
  ident: bib71
  article-title: Toward a principled bayesian workflow in cognitive science
  publication-title: Psychol. Methods
– volume: 59
  start-page: 241
  year: 2016
  end-page: 258
  ident: bib11
  article-title: Establishing the nitrogen dilution curve for potato cultivar bintje in Belgium
  publication-title: Potato Res.
– volume: Volume 30
  start-page: 5419
  year: 2017
  end-page: 5454
  ident: bib34
  article-title: The modern-era retrospective analysis for research and applications, version 2 (Merra-2)
  publication-title: J. Clim.
– reference: Weather Spark. 2021. Compare the Climate and Weather in Becker, Saint-Léonard, Balcarce, and Gembloux. Retrieved from 〈
– volume: 78
  start-page: 355
  year: 2001
  end-page: 364
  ident: bib9
  article-title: Critical nitrogen curve and nitrogen nutrition index for potato in eastern Canada
  publication-title: Am. J. Potato Res
– volume: 77
  start-page: 11
  year: 2000
  end-page: 21
  ident: bib8
  article-title: Yield response of two potato culivars to supplemental irrigation and N fertilization in new brunswick
  publication-title: Am. J. Potato Res.
– volume: 91
  start-page: 265
  year: 1978
  end-page: 278
  ident: bib45
  article-title: Effects of row width and planting density on growth and yield of two maincrop potato varieties. 1. Plant morphology and dry-matter accumulation
  publication-title: J. Agric. Sci.
– volume: 281
  start-page: 277
  year: 1977
  end-page: 294
  ident: bib59
  article-title: Climate and the efficiency of crop production in Britain
  publication-title: Philos. Trans. R. Soc. Lond. B
– volume: 73
  start-page: 799
  year: 1981
  end-page: 802
  ident: bib49
  article-title: Dry matter production and nitrogen utilization by six potato cultivars
  publication-title: Agron. J.
– volume: 239
  start-page: 192
  year: 2017
  end-page: 201
  ident: bib55
  article-title: Field responses of potato to increased temperature during tuber bulking: projection for climate change scenarios, at high-yield environments of southern chile
  publication-title: Agric. . Meteorol.
– year: 2021
  ident: bib24
  article-title: R: A Language and Environment for Statistical Computing
– reference: : University of Minnesota Extension. Retrieved from 〈
– reference: Rosen, C., M. Errebhi, J. Moncrief, S. Gupta, H.H. Cheng, and D. Birong. 1993. Nitrogen Fertilization Studies on Irrigated Potatoes: Nitrogen Use, Soil Nitrate Movement, and Petiole Sap Nitrate Analysis for Predicting Nitrogen Needs. Field Research in Soil Science – Soil Series #136. St. Paul, MN: University of Minnesota. Retrieved from 〈
– start-page: 119
  year: 1997
  end-page: 130
  ident: bib26
  article-title: Potatoes
  publication-title: Diagonsis of the Nitrogen Status in Crops
– volume: 66
  start-page: 425
  year: 1990
  end-page: 436
  ident: bib38
  article-title: Decline in percentage N of C3 and C4 crops with increasing plant mass
  publication-title: Ann. Bot.
– volume: 11
  start-page: 255
  year: 2021
  ident: bib77
  article-title: Genotype and variable nitrogen effects on tuber yield and quality for red fresh market potatoes in Minnesota
  publication-title: Agronomy
– reference: Porter, G. 2014. 201400091. USDA PVPO.
– volume: 33
  year: 1990
  ident: bib85
  article-title: Influence of plant spacing on potato (Solanum tuberosum L.) morphology, growth and yield under two contrasting environments
  publication-title: Potato Res.
– reference: 〉.
– reference: Bates, D.M. 2010.
– volume: 13
  year: 2021
  ident: bib53
  article-title: Improving potato yield prediction by combining cultivar information and uav remote sensing data using machine learning
  publication-title: Remote Sens.
– volume: Volume 14
  start-page: 89
  year: 1992
  end-page: 198
  ident: bib29
  article-title: Tuber formation in potato: induction, initiation, and growth
  publication-title: Horticultural Reviews
– volume: 06
  start-page: 3144
  year: 2015
  end-page: 3156
  ident: bib35
  article-title: Critical nitrogen dilution curve in processing potato cultivars
  publication-title: Am. J. Plant Sci.
– reference: Crants, J., C. Rosen, M. McNearney, and L. Sun. 2017. The Use of Chlorophyll Meters for Nitrogen Management in Potatoes. Research Reports – 2017. Fargo, ND: Minnesota Area II Potato Research and Promotion Council and Northern Plains Potato Growers Association. Retrieved from 〈
– volume: 110
  start-page: 1
  year: 2018
  ident: bib61
  article-title: Strengths and limitations of nitrogen rate recommendations for corn and opportunities for improvement
  publication-title: Agron. J.
– reference: Egel, D.S. 2017. Midwest Vegetable Production Guide for Commercial Growers.
– reference: Sun, N. 2017. Agronomic and Storage Factors Affecting Acrylamide Formation in Processed Potatoes. (Ph.D.). University of Minnesota, St. Paul, MN. Retrieved from 〈
– volume: 16
  start-page: 667
  year: 2021
  end-page: 718
  ident: bib86
  article-title: Rank-normalization, folding, and localization: an improved R-hat for assessing convergence of MCMC (with Discussion)
  publication-title: Bayesian Anal.
– reference: Franzen, D., A. Robinson, and C. Rosen. 2018. Fertilizing Potato in North Dakota. SF715. Fargo, ND: North Dakota State University. Retrieved from 〈
– volume: 91
  start-page: 281
  year: 1986
  end-page: 301
  ident: bib37
  article-title: Quantitative relationships for the dependence of growth rate of arable crops on their nitrogen content, dry weight and aerial environment
  publication-title: Plant Soil
– volume: 96
  start-page: 1131
  year: 2004
  end-page: 1138
  ident: bib41
  article-title: The range of the critical nitrogen dilution curve for maize (Zea mays L.) can be extended until silage maturity
  publication-title: Agron. J.
– volume: 80
  year: 2017
  ident: bib17
  article-title: brms: an R package for bayesian multilevel models using stan
  publication-title: J. Stat. Softw.
– start-page: 3
  year: 1997
  end-page: 43
  ident: bib51
  article-title: N uptake and distribution in plant canopies
  publication-title: Diagnosis of the Nitrogen Status in Crops
– year: 2021
  ident: bib15
  article-title: Relating nitrogen use efficiency to nitrogen nutrition index for evaluation of agronomic and environmental outcomes in potato
  publication-title: Field Crops Res.
– reference: Ushey, K. 2021. renv: Project Environments. Retrieved from 〈
– volume: 128
  year: 2021
  ident: bib88
  article-title: Uncertainty analysis of critical nitrogen dilution curves for wheat
  publication-title: Eur. J. Agron.
– volume: 68
  start-page: 81
  year: 1991
  end-page: 86
  ident: bib12
  article-title: Diurnal temperature fluctuation effects on potatoes grown with 12 hr photoperiods
  publication-title: Am. Potato J.
– reference: Rosen, C., J. Crants, B. Bohman, and M. McNearney. 2021. Effects of Banded Versus Broadcast Application of ESN, Turkey Manure, and Different Approaches to Measuring Plant N Status on Tuber Yield and Quality in Russet Burbank Potatoes. Reserach Reports – 2021. Fargo, ND: Minnesota Area II Potato Research and Promotion Council and Northern Plains Potato Growers Association. Retrieved from 〈
– volume: 216
  start-page: 65
  year: 2000
  end-page: 82
  ident: bib62
  article-title: Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration
  publication-title: Plant Soil
– volume: 90
  start-page: 10
  year: 1998
  end-page: 15
  ident: bib28
  article-title: Potato yield response and nitrate leaching as influenced by nitrogen management
  publication-title: Agron. J.
– reference: Rosen, C.J. 2018. Potato Fertilization on Irrigated Soils: University of Minnesota Extension. Retrieved from 〈
– reference: Plummer, M. 2013. jags: Just Another Gibs Sampler. Retrieved from 〈
– volume: 65
  start-page: 215
  year: 1999
  end-page: 265
  ident: bib74
  article-title: Advances in Agronomy
  publication-title: Radiation Use Efficiency
– volume: 45
  start-page: 587
  year: 2018
  ident: bib83
  article-title: Integrated genomics, physiology and breeding approaches for improving nitrogen use efficiency in potato: translating knowledge from other crops
  publication-title: Funct. Plant Biol.
– year: 1970
  ident: bib43
  publication-title: Official Methods of Analysis of the Association of Official Analytical Chemists
– volume: 111
  start-page: 408
  year: 2019
  ident: bib79
  article-title: Nitrogen fertility and cultivar effects on potato agronomic properties and acrylamide-forming potential
  publication-title: Agron. J.
– volume: 168
  start-page: 27
  year: 2014
  end-page: 37
  ident: bib20
  article-title: Nitrogen utilization efficiency in maize as affected by hybrid and N rate in late-sown crops
  publication-title: Field Crops Res.
– volume: 78
  start-page: 264
  year: 1986
  end-page: 269
  ident: bib13
  article-title: Potato top growth as influenced by day-night temperature differences
  publication-title: Agron. J.
– reference: Rosen, C., D. Birong, and M. Zumwinkle. 1992. Nitrogen Fertilization Studies on Irrigated Potatoes: Nitrogen Use, Soil Nitrate Movement, and Petiole Sap Nitrate Analysis for Predicting Nitrogen Needs.
– volume: 33
  start-page: 1
  year: 2010
  end-page: 11
  ident: bib5
  article-title: Nitrogen efficiency of wheat: genotypic and environmental variation and prospects for improvement
  publication-title: Eur. J. Agron.
– volume: 27
  start-page: 1
  year: 2007
  end-page: 11
  ident: bib44
  article-title: Elaboration of a nitrogen nutrition indicator for winter wheat based on leaf area index and chlorophyll content for making nitrogen recommendations
  publication-title: Eur. J. Agron.
– year: 2020
  ident: bib56
  article-title: Analyzing uncertainty in critical nitrogen dilution curves
  publication-title: Eur. J. Agron.
– reference: Wright, J. 2002. Irrigation Scheduling Checkbook Method. BU-FO-01322. St. Paul, MN: University of Minnesota. Retrieved from 〈
– volume: 94
  start-page: 583
  year: 1980
  end-page: 606
  ident: bib1
  article-title: An analysis of growth of the potato crop
  publication-title: J. Agr. Sci.
– volume: 66
  start-page: 241
  year: 1966
  end-page: 252
  ident: bib16
  article-title: Studies in potato agronomy. I. The effects of variety, seed size and spacing on growth, development and yield
  publication-title: J. Agric. Sci.
– reference: R Core Team. 2021b. "stats": The R Stats Package. Retrieved from 〈
– reference: OSU. 2021. Potato Variety Identification and Ownership Table: Oregon State University – Oregon Seed Certification Service. Retrieved from 〈
– start-page: 75
  year: 1998
  end-page: 84
  ident: bib42
  article-title: Determination of total nitrogen in plant tissue
  publication-title: Handbook of Reference Methods for Plant Analysis
– volume: 10
  start-page: 300
  year: 2019
  ident: bib48
  article-title: Differential mechanisms of potato yield loss induced by high day and night temperatures during tuber initiation and bulking: photosynthesis and tuber growth
  publication-title: Front. Plant Sci.
– volume: 164
  start-page: 54
  year: 2014
  end-page: 64
  ident: bib70
  article-title: Quantifying crop nitrogen status for comparisons of agronomic practices and genotypes
  publication-title: Field Crops Res.
– volume: 26
  start-page: 983
  year: 2010
  end-page: 996
  ident: bib76
  article-title: Spreadsheet implementation of irrigation scheduling by the checkbook method for North Dakota and Minnesota
  publication-title: Appl. Eng. Agric.
– volume: 39
  year: 2019
  ident: bib52
  article-title: Allometric approach to crop nutrition and implications for crop diagnosis and phenotyping. A review
  publication-title: Agron. Sustain. Dev.
– volume: 74
  start-page: 397
  year: 1994
  end-page: 407
  ident: bib47
  article-title: Determination of a critical nitrogen dilution curve for winter wheat crops
  publication-title: Ann. Bot.
– volume: 9
  year: 2020
  ident: bib50
  article-title: Crop mass and N status as prerequisite covariables for unraveling nitrogen use efficiency across genotype-by-environment-by-management scenarios: a review
  publication-title: Plants
– volume: 10
  start-page: 395
  year: 2018
  end-page: 411
  ident: bib18
  article-title: Advanced bayesian multilevel modeling with the R package brms
  publication-title: R. J.
– volume: 9
  year: 2020
  ident: bib80
  article-title: Potato tuber chemical properties in storage as affected by cultivar and nitrogen rate: implications for acrylamide formation
  publication-title: Foods
– reference: Thompson, A. 2013. 201300475. USDA PVPO.
– start-page: 19
  year: 2020
  end-page: 33
  ident: bib82
  article-title: Potato growth and development
  publication-title: Potato Production Systems
– reference: Plummer, M. 2019. Rjags: Bayesian Graphical Models Using Mcmc. Retrieved from 〈
– reference: Gupta, S., and C.J. Rosen. 2019. Nitrogen Fertilization Rate and Cold-Induced Sweetening in Potato Tubers During Storage. Research Reports – 2019. Fargo, ND: Minnesota Area II Potato Research and Promotion Council and Northern Plains Potato Growers Association. Retrieved from 〈
– volume: 55
  start-page: 35
  year: 1985
  end-page: 39
  ident: bib58
  article-title: Tuberization in potato at high temperatures: interaction between temperature and irradiance
  publication-title: Ann. Bot.
– reference: . St. Paul, MN: University of Minnesota. Retrieved from 〈
– volume: 131
  year: 2021
  ident: bib31
  article-title: Revisiting the critical nitrogen dilution curve for tall fescue: a quantitative synthesis
  publication-title: Eur. J. Agron.
– reference: Stark, J.C., Thompson, A.L., Novy, R., 2020. Variety Selection and Management. In: Stark, J. C., Thornton, M., Nolte, P. (Eds.), Potato Production Systems. pp. 35–64.
– reference: .
– volume: 46
  start-page: 673
  year: 1990
  end-page: 687
  ident: bib54
  article-title: Nonlinear mixed effects models for repeated measures data
  publication-title: Biometrics
– year: 2020
  ident: bib57
  publication-title: Staistical Rethinking: A Bayesian Course with Examples in R and Stan
– reference: USDA. 1997. United States Standards for Grades of Potatoes for Processing. Retrieved from 〈
– volume: 76
  year: 2017
  ident: bib19
  article-title: Stan: a probabilistic programming language
  publication-title: J. Stat. Softw.
– reference: AHDB. 2015. Charlotte: Agriculture and Horticulture Development Board. Retrieved from 〈
– start-page: 161
  year: 2015
  end-page: 206
  ident: bib33
  article-title: Quantifying Crop Responses to Nitrogen and Avenues to Improve Nitrogen-Use Efficiency
  publication-title: Crop Physiology
– year: 2020
  ident: bib36
  article-title: Shoot- and tuber-based critical nitrogen dilution curves for the prediction of the N status in potato
  publication-title: Eur. J. Agron.
– reference: Gupta, S.K., J. Crants, M. McNearney, and C.J. Rosen. 2020. Evaluation of a Promising Minnesota Clone for N Response, Agronomic Traits & Storage Quality. Research Reports – 2020. Fargo, ND: Minnesota Area II Potato Research and Promotion Council and Northern Plains Potato Growers Association. Retrieved from 〈
– reference: CFIA. 2013. Bintje: Canadian Food Inspection Agency. Retrieved from 〈
– volume: 11
  start-page: 14
  year: 1968
  end-page: 22
  ident: bib73
  article-title: The effect of night temperature on tuber initiation of the potato
  publication-title: Eur. Potato J.
– volume: 123
  year: 2021
  ident: bib22
  article-title: Does the critical N dilution curve for maize crop vary across genotype X environment x management scenarios? - a bayesian analysis
  publication-title: Eur. J. Agron.
– volume: 9
  start-page: 277
  issue: 1
  year: 2022
  ident: 10.1016/j.eja.2023.126744_bib21
  article-title: A global dataset to parametrize critical nitrogen dilution curves for major crop species
  publication-title: Sci. Data
  doi: 10.1038/s41597-022-01395-2
– volume: 77
  start-page: 11
  issue: 1
  year: 2000
  ident: 10.1016/j.eja.2023.126744_bib8
  article-title: Yield response of two potato culivars to supplemental irrigation and N fertilization in new brunswick
  publication-title: Am. J. Potato Res.
  doi: 10.1007/BF02853657
– volume: 10
  start-page: 395
  issue: 1
  year: 2018
  ident: 10.1016/j.eja.2023.126744_bib18
  article-title: Advanced bayesian multilevel modeling with the R package brms
  publication-title: R. J.
  doi: 10.32614/RJ-2018-017
– volume: Volume 30
  start-page: 5419
  issue: Iss 13
  year: 2017
  ident: 10.1016/j.eja.2023.126744_bib34
  article-title: The modern-era retrospective analysis for research and applications, version 2 (Merra-2)
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-16-0758.1
– year: 2020
  ident: 10.1016/j.eja.2023.126744_bib57
– ident: 10.1016/j.eja.2023.126744_bib39
– volume: 168
  start-page: 27
  year: 2014
  ident: 10.1016/j.eja.2023.126744_bib20
  article-title: Nitrogen utilization efficiency in maize as affected by hybrid and N rate in late-sown crops
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2014.08.005
– start-page: 3
  year: 1997
  ident: 10.1016/j.eja.2023.126744_bib51
  article-title: N uptake and distribution in plant canopies
– volume: 281
  start-page: 277
  year: 1977
  ident: 10.1016/j.eja.2023.126744_bib59
  article-title: Climate and the efficiency of crop production in Britain
  publication-title: Philos. Trans. R. Soc. Lond. B
  doi: 10.1098/rstb.1977.0140
– volume: 33
  issue: 313–323
  year: 1990
  ident: 10.1016/j.eja.2023.126744_bib85
  article-title: Influence of plant spacing on potato (Solanum tuberosum L.) morphology, growth and yield under two contrasting environments
  publication-title: Potato Res.
– volume: 239
  start-page: 192
  year: 2017
  ident: 10.1016/j.eja.2023.126744_bib55
  article-title: Field responses of potato to increased temperature during tuber bulking: projection for climate change scenarios, at high-yield environments of southern chile
  publication-title: Agric. . Meteorol.
  doi: 10.1016/j.agrformet.2017.03.012
– start-page: 119
  year: 1997
  ident: 10.1016/j.eja.2023.126744_bib26
  article-title: Potatoes
– ident: 10.1016/j.eja.2023.126744_bib40
– ident: 10.1016/j.eja.2023.126744_bib63
– volume: 111
  start-page: 408
  issue: 1
  year: 2019
  ident: 10.1016/j.eja.2023.126744_bib79
  article-title: Nitrogen fertility and cultivar effects on potato agronomic properties and acrylamide-forming potential
  publication-title: Agron. J.
  doi: 10.2134/agronj2018.05.0350
– ident: 10.1016/j.eja.2023.126744_bib25
– ident: 10.1016/j.eja.2023.126744_bib67
– volume: 06
  start-page: 3144
  issue: 19
  year: 2015
  ident: 10.1016/j.eja.2023.126744_bib35
  article-title: Critical nitrogen dilution curve in processing potato cultivars
  publication-title: Am. J. Plant Sci.
  doi: 10.4236/ajps.2015.619306
– ident: 10.1016/j.eja.2023.126744_bib4
– ident: 10.1016/j.eja.2023.126744_bib32
– volume: 46
  start-page: 673
  issue: 3
  year: 1990
  ident: 10.1016/j.eja.2023.126744_bib54
  article-title: Nonlinear mixed effects models for repeated measures data
  publication-title: Biometrics
  doi: 10.2307/2532087
– volume: 16
  start-page: 667
  issue: 2
  year: 2021
  ident: 10.1016/j.eja.2023.126744_bib86
  article-title: Rank-normalization, folding, and localization: an improved R-hat for assessing convergence of MCMC (with Discussion)
  publication-title: Bayesian Anal.
  doi: 10.1214/20-BA1221
– start-page: 118
  year: 2020
  ident: 10.1016/j.eja.2023.126744_bib56
  article-title: Analyzing uncertainty in critical nitrogen dilution curves
  publication-title: Eur. J. Agron.
– start-page: 19
  year: 2020
  ident: 10.1016/j.eja.2023.126744_bib82
  article-title: Potato growth and development
– volume: 216
  start-page: 65
  issue: 1/2
  year: 2000
  ident: 10.1016/j.eja.2023.126744_bib62
  article-title: Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration
  publication-title: Plant Soil
  doi: 10.1023/A:1004783431055
– volume: 73
  start-page: 799
  issue: 5
  year: 1981
  ident: 10.1016/j.eja.2023.126744_bib49
  article-title: Dry matter production and nitrogen utilization by six potato cultivars
  publication-title: Agron. J.
  doi: 10.2134/agronj1981.00021962007300050013x
– volume: 26
  start-page: 103
  issue: 1
  year: 2021
  ident: 10.1016/j.eja.2023.126744_bib71
  article-title: Toward a principled bayesian workflow in cognitive science
  publication-title: Psychol. Methods
  doi: 10.1037/met0000275
– volume: 131
  year: 2021
  ident: 10.1016/j.eja.2023.126744_bib31
  article-title: Revisiting the critical nitrogen dilution curve for tall fescue: a quantitative synthesis
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2021.126380
– volume: 13
  issue: 16
  year: 2021
  ident: 10.1016/j.eja.2023.126744_bib53
  article-title: Improving potato yield prediction by combining cultivar information and uav remote sensing data using machine learning
  publication-title: Remote Sens.
  doi: 10.3390/rs13163322
– ident: 10.1016/j.eja.2023.126744_bib78
– ident: 10.1016/j.eja.2023.126744_bib68
– volume: 11
  start-page: 14
  issue: 1
  year: 1968
  ident: 10.1016/j.eja.2023.126744_bib73
  article-title: The effect of night temperature on tuber initiation of the potato
  publication-title: Eur. Potato J.
  doi: 10.1007/BF02365158
– volume: 11
  start-page: 255
  year: 2021
  ident: 10.1016/j.eja.2023.126744_bib77
  article-title: Genotype and variable nitrogen effects on tuber yield and quality for red fresh market potatoes in Minnesota
  publication-title: Agronomy
  doi: 10.3390/agronomy11020255
– volume: 66
  start-page: 241
  issue: 2
  year: 1966
  ident: 10.1016/j.eja.2023.126744_bib16
  article-title: Studies in potato agronomy. I. The effects of variety, seed size and spacing on growth, development and yield
  publication-title: J. Agric. Sci.
  doi: 10.1017/S0021859600062651
– volume: 123
  year: 2021
  ident: 10.1016/j.eja.2023.126744_bib22
  article-title: Does the critical N dilution curve for maize crop vary across genotype X environment x management scenarios? - a bayesian analysis
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2020.126202
– ident: 10.1016/j.eja.2023.126744_bib64
– volume: Volume 14
  start-page: 89
  year: 1992
  ident: 10.1016/j.eja.2023.126744_bib29
  article-title: Tuber formation in potato: induction, initiation, and growth
– volume: 9
  issue: 3
  year: 2020
  ident: 10.1016/j.eja.2023.126744_bib80
  article-title: Potato tuber chemical properties in storage as affected by cultivar and nitrogen rate: implications for acrylamide formation
  publication-title: Foods
  doi: 10.3390/foods9030352
– ident: 10.1016/j.eja.2023.126744_bib81
– ident: 10.1016/j.eja.2023.126744_bib3
– volume: 59
  start-page: 241
  issue: 3
  year: 2016
  ident: 10.1016/j.eja.2023.126744_bib11
  article-title: Establishing the nitrogen dilution curve for potato cultivar bintje in Belgium
  publication-title: Potato Res.
  doi: 10.1007/s11540-016-9331-y
– volume: 68
  start-page: 81
  year: 1991
  ident: 10.1016/j.eja.2023.126744_bib12
  article-title: Diurnal temperature fluctuation effects on potatoes grown with 12 hr photoperiods
  publication-title: Am. Potato J.
  doi: 10.1007/BF02853925
– ident: 10.1016/j.eja.2023.126744_bib7
– ident: 10.1016/j.eja.2023.126744_bib14
– volume: 39
  issue: 2
  year: 2019
  ident: 10.1016/j.eja.2023.126744_bib52
  article-title: Allometric approach to crop nutrition and implications for crop diagnosis and phenotyping. A review
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-019-0570-6
– year: 2021
  ident: 10.1016/j.eja.2023.126744_bib24
– volume: 33
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.eja.2023.126744_bib5
  article-title: Nitrogen efficiency of wheat: genotypic and environmental variation and prospects for improvement
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2010.01.005
– volume: 78
  start-page: 355
  issue: 5
  year: 2001
  ident: 10.1016/j.eja.2023.126744_bib9
  article-title: Critical nitrogen curve and nitrogen nutrition index for potato in eastern Canada
  publication-title: Am. J. Potato Res
  doi: 10.1007/BF02884344
– volume: 91
  start-page: 265
  issue: 2
  year: 1978
  ident: 10.1016/j.eja.2023.126744_bib45
  article-title: Effects of row width and planting density on growth and yield of two maincrop potato varieties. 1. Plant morphology and dry-matter accumulation
  publication-title: J. Agric. Sci.
  doi: 10.1017/S0021859600046359
– volume: 78
  start-page: 264
  issue: 2
  year: 1986
  ident: 10.1016/j.eja.2023.126744_bib13
  article-title: Potato top growth as influenced by day-night temperature differences
  publication-title: Agron. J.
  doi: 10.2134/agronj1986.00021962007800020010x
– volume: 90
  start-page: 10
  year: 1998
  ident: 10.1016/j.eja.2023.126744_bib28
  article-title: Potato yield response and nitrate leaching as influenced by nitrogen management
  publication-title: Agron. J.
  doi: 10.2134/agronj1998.00021962009000010003x
– ident: 10.1016/j.eja.2023.126744_bib23
– volume: 65
  start-page: 215
  year: 1999
  ident: 10.1016/j.eja.2023.126744_bib74
  article-title: Advances in Agronomy
– start-page: 262
  year: 2021
  ident: 10.1016/j.eja.2023.126744_bib15
  article-title: Relating nitrogen use efficiency to nitrogen nutrition index for evaluation of agronomic and environmental outcomes in potato
  publication-title: Field Crops Res.
– volume: 139
  year: 2022
  ident: 10.1016/j.eja.2023.126744_bib30
  article-title: Dataset characteristics for the determination of critical nitrogen dilution curves: from past to new guidelines
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2022.126568
– volume: 55
  start-page: 35
  issue: 1
  year: 1985
  ident: 10.1016/j.eja.2023.126744_bib58
  article-title: Tuberization in potato at high temperatures: interaction between temperature and irradiance
  publication-title: Ann. Bot.
  doi: 10.1093/oxfordjournals.aob.a086875
– volume: 26
  start-page: 983
  year: 2010
  ident: 10.1016/j.eja.2023.126744_bib76
  article-title: Spreadsheet implementation of irrigation scheduling by the checkbook method for North Dakota and Minnesota
  publication-title: Appl. Eng. Agric.
  doi: 10.13031/2013.35914
– volume: 45
  start-page: 587
  issue: 6
  year: 2018
  ident: 10.1016/j.eja.2023.126744_bib83
  article-title: Integrated genomics, physiology and breeding approaches for improving nitrogen use efficiency in potato: translating knowledge from other crops
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP17303
– ident: 10.1016/j.eja.2023.126744_bib27
– volume: 96
  start-page: 1131
  issue: 4
  year: 2004
  ident: 10.1016/j.eja.2023.126744_bib41
  article-title: The range of the critical nitrogen dilution curve for maize (Zea mays L.) can be extended until silage maturity
  publication-title: Agron. J.
  doi: 10.2134/agronj2004.1131
– volume: 10
  start-page: 300
  year: 2019
  ident: 10.1016/j.eja.2023.126744_bib48
  article-title: Differential mechanisms of potato yield loss induced by high day and night temperatures during tuber initiation and bulking: photosynthesis and tuber growth
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00300
– volume: 110
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.eja.2023.126744_bib61
  article-title: Strengths and limitations of nitrogen rate recommendations for corn and opportunities for improvement
  publication-title: Agron. J.
  doi: 10.2134/agronj2017.02.0112
– ident: 10.1016/j.eja.2023.126744_bib84
– volume: 128
  year: 2021
  ident: 10.1016/j.eja.2023.126744_bib88
  article-title: Uncertainty analysis of critical nitrogen dilution curves for wheat
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2021.126315
– volume: 91
  start-page: 281
  issue: 3
  year: 1986
  ident: 10.1016/j.eja.2023.126744_bib37
  article-title: Quantitative relationships for the dependence of growth rate of arable crops on their nitrogen content, dry weight and aerial environment
  publication-title: Plant Soil
  doi: 10.1007/BF02198111
– volume: 61
  start-page: 878
  year: 2021
  ident: 10.1016/j.eja.2023.126744_bib46
  article-title: Nitrogen uptake and utilization in advanced fresh-market red potato breeding lines
  publication-title: Crop Sci.
  doi: 10.1002/csc2.20297
– ident: 10.1016/j.eja.2023.126744_bib65
– start-page: 161
  year: 2015
  ident: 10.1016/j.eja.2023.126744_bib33
  article-title: Quantifying Crop Responses to Nitrogen and Avenues to Improve Nitrogen-Use Efficiency
– ident: 10.1016/j.eja.2023.126744_bib69
– volume: 164
  start-page: 54
  year: 2014
  ident: 10.1016/j.eja.2023.126744_bib70
  article-title: Quantifying crop nitrogen status for comparisons of agronomic practices and genotypes
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2014.05.006
– volume: 80
  issue: 1
  year: 2017
  ident: 10.1016/j.eja.2023.126744_bib17
  article-title: brms: an R package for bayesian multilevel models using stan
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v080.i01
– ident: 10.1016/j.eja.2023.126744_bib2
– ident: 10.1016/j.eja.2023.126744_bib6
– volume: 66
  start-page: 425
  issue: 4
  year: 1990
  ident: 10.1016/j.eja.2023.126744_bib38
  article-title: Decline in percentage N of C3 and C4 crops with increasing plant mass
  publication-title: Ann. Bot.
  doi: 10.1093/oxfordjournals.aob.a088044
– volume: 78
  start-page: 109
  issue: 2
  year: 2001
  ident: 10.1016/j.eja.2023.126744_bib10
  article-title: Tuber growth and biomass partitioning of two potato cultivars grown under different N fertilization rates with and without irrigation
  publication-title: Am. J. Potato Res.
  doi: 10.1007/BF02874766
– ident: 10.1016/j.eja.2023.126744_bib75
  doi: 10.1007/978-3-030-39157-7_3
– volume: 76
  issue: 1
  year: 2017
  ident: 10.1016/j.eja.2023.126744_bib19
  article-title: Stan: a probabilistic programming language
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v076.i01
– ident: 10.1016/j.eja.2023.126744_bib72
– start-page: 119
  year: 2020
  ident: 10.1016/j.eja.2023.126744_bib36
  article-title: Shoot- and tuber-based critical nitrogen dilution curves for the prediction of the N status in potato
  publication-title: Eur. J. Agron.
– volume: 9
  issue: 10
  year: 2020
  ident: 10.1016/j.eja.2023.126744_bib50
  article-title: Crop mass and N status as prerequisite covariables for unraveling nitrogen use efficiency across genotype-by-environment-by-management scenarios: a review
  publication-title: Plants
  doi: 10.3390/plants9101309
– volume: 107
  start-page: 1295
  issue: 4
  year: 2015
  ident: 10.1016/j.eja.2023.126744_bib60
  article-title: In-season nitrogen status assessment and yield estimation using hyperspectral vegetation indices in a potato crop
  publication-title: Agron. J.
  doi: 10.2134/agronj14.0402
– start-page: 75
  year: 1998
  ident: 10.1016/j.eja.2023.126744_bib42
  article-title: Determination of total nitrogen in plant tissue
– volume: 74
  start-page: 397
  issue: 4
  year: 1994
  ident: 10.1016/j.eja.2023.126744_bib47
  article-title: Determination of a critical nitrogen dilution curve for winter wheat crops
  publication-title: Ann. Bot.
  doi: 10.1006/anbo.1994.1133
– volume: 27
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.eja.2023.126744_bib44
  article-title: Elaboration of a nitrogen nutrition indicator for winter wheat based on leaf area index and chlorophyll content for making nitrogen recommendations
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2006.10.001
– ident: 10.1016/j.eja.2023.126744_bib87
– volume: 94
  start-page: 583
  issue: 3
  year: 1980
  ident: 10.1016/j.eja.2023.126744_bib1
  article-title: An analysis of growth of the potato crop
  publication-title: J. Agr. Sci.
  doi: 10.1017/S0021859600028598
– ident: 10.1016/j.eja.2023.126744_bib66
– year: 1970
  ident: 10.1016/j.eja.2023.126744_bib43
SSID ssj0008254
Score 2.364942
Snippet Multiple critical N dilution curves [CNDCs] have been previously developed for potato; however, attempts to directly compare differences in CNDCs across...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 126744
SubjectTerms agronomy
Bayesian
Bayesian theory
class
Critical N concentration
Critical nitrogen dilution curve
data collection
genotype
Genotype-by-environment-by-management interactions
nitrogen content
Nitrogen nutrition index
Nitrogen use efficiency
nutrient use efficiency
nutrition
Potato
potatoes
uncertainty
Title Quantifying critical N dilution curves across G × E × M effects for potato using a partially-pooled Bayesian hierarchical method
URI https://dx.doi.org/10.1016/j.eja.2023.126744
https://www.proquest.com/docview/3242053677
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3wuI3gS6nbbNNkeV1ldlV0QFLyFJE1kZdld9iF48eR_8Opv0T9mpk0VBffgsaVpysxk5kvzzQwhh0xFdc0sC5RiNqA2toFM6zJQDg1ThUE8xmzkdoe1bunlXXI3R07LXBikVXrfX_j03Fv7O1Uvzeqw2626dciwR5Z7Xf47BctuU8rRyo-fv2keuAPKG6wwpA6FtfJkM-d4mQcsPRTFx244p_Sv2PTLS-eh52yFLHvMCI3is1bJnOmvkaXG_cjXzTDr5OV6KpH2g0lLoH37AuhA1i0sC_R09GjGIPOZ4Rw-XqH5_vbx-v7WBs_pAIdfYThw6HMASIe_BwlDlIXs9Z4C7MVlMjiRTwbzLgF7aOenEDhR0Yd6g9yeNW9OW4FvsBDoiCaTIGOxdAgwc9NoqVUodc2ETGVJbBNmLcIVpEFxbq1MeS1RpiYzpt0eMOVZ6rbhm2S-P-ibLQKhTmjMtVQ0Symnqs6NE6hmkQ6VSiK-TcJStEL76uPYBKMnSprZg3DaEKgNUWhjmxx9DRkWpTdmPUxLfYkf9iNcaJg17KDUrXDrCg9LZN8MpmOBQNM5KMb5zv9evUsW8argq-2R-cloavYdgJmoSm6hFbLQuLhqdT4Bh73zbg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFH6CcoAdENtAMBh7k3aaFJomjt0cOwQrg1aaBBI3y3bsqqhqq9Iicec_cOW3wB_DL3GQmASHXZPYjt5znj_H33sfwA-uk7bhjkdacxcxl7pI5W0VaY-GmaZFPKVs5F6fdy_Yn8vscgkO61wYolWG2F_F9DJahyvNYM3mdDhs-u-Qk0aW7678ncKXYYWqU2UNWOmcnHb7LwGZNkGlxgon9lDcqg83S5qXvaLqQ0l64HsQjL21PP0TqMvV53gD1gNsxE71Zh9hyY4_wYfOYBZKZ9jPcPd3oYj5Q3lLaIKCAfaxGFaTC81idmOvUZUj4298usejx4en-8eHHgZaB3oIi9OJB6ATJEb8ABVOyRxqNLqNSI7LFvhL3VpKvUSS0S4PImigSop6Ey6Oj84Pu1HQWIhMwrJ5VPBUeRBY-GGMMjpWpmVjrossdRl3jhALMaGEcE7lopVp21IFN34bmIsi9zvxLWiMJ2O7DRibjKXCKM2KnAmm28J6gxqemFjrLBE7ENemlSYUICcdjJGsmWZX0ntDkjdk5Y0d-PnSZFpV33jvYVb7S76aQtKvDu81-177VvpPi85L1NhOFteSsKaPUVyIL__X9TdY7Z73zuTZSf90F9boTkVf24PGfLawXz2emev9MF-fAdfR9h8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+critical+N+dilution+curves+across+G+%C3%97+E%C2%A0%C3%97%C2%A0M+effects+for+potato+using+a+partially-pooled+Bayesian+hierarchical+method&rft.jtitle=European+journal+of+agronomy&rft.au=Bohman%2C+Brian+J.&rft.au=Culshaw-Maurer%2C+Michael+J.&rft.au=Ben+Abdallah%2C+Feriel&rft.au=Giletto%2C+Claudia&rft.date=2023-03-01&rft.issn=1161-0301&rft.volume=144&rft.spage=126744&rft_id=info:doi/10.1016%2Fj.eja.2023.126744&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eja_2023_126744
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1161-0301&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1161-0301&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1161-0301&client=summon