Quantifying critical N dilution curves across G × E × M effects for potato using a partially-pooled Bayesian hierarchical method
Multiple critical N dilution curves [CNDCs] have been previously developed for potato; however, attempts to directly compare differences in CNDCs across genotype [G], environment [E], and management [M] interactions have been confounded by non-uniform statistical methods, biased experimental data, a...
Saved in:
Published in | European journal of agronomy Vol. 144; p. 126744 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multiple critical N dilution curves [CNDCs] have been previously developed for potato; however, attempts to directly compare differences in CNDCs across genotype [G], environment [E], and management [M] interactions have been confounded by non-uniform statistical methods, biased experimental data, and lack of proper quantification of uncertainty in the critical N concentration [%Nc]. This study implements a partially-pooled Bayesian hierarchical method to develop CNDCs for previously published and newly reported experimental data, systematically evaluates the difference in %Nc [∆%Nc] across G × E × M effects, and directly compare CNDCs from the Bayesian framework to CNDCs from conventional statistical methods. The partially-pooled Bayesian hierarchical method implemented in this study has the advantage of being less susceptible to inferential bias at the level of individual G × E × M interactions compared to alternative statistical methods that result from insufficient quantity and quality of experimental datasets (e.g., unbalanced distribution of N limiting and non-N limiting observations). This method also allows for a direct statistical comparison of differences in %Nc across levels of the G × E × M interactions. Where found to be significant, ∆%Nc was hypothesized to be related to variation in the timing of tuber initiation (e.g., maturity class) and the relative rate of tuber bulking (e.g., planting density) across G x E × M interactions. In addition to using the median value for %Nc (i.e., CNDC), the lower and upper boundary values for the credible region (i.e., CNDClo and CNDCup) derived using the Bayesian framework should be used in calculation of N nutrition index (and other calculations) to account for uncertainty in %Nc. Overall, this study provides additional evidence that%Nc is dependent upon G × E × M interactions; therefore, evaluation of crop N status or N use efficiency must account for variation in %Nc across G × E × M interactions.
•Critical N dilution curves [CNDCs] for potato are subject to G x E x M effects.•Bayesian methods can quantify uncertainty in critical N concentration [%Nc].•Partial pooling Bayesian method enables direct comparison of G x E x M effects.•Variation in %Nc for potato due to tuber initiation timing and tuber bulking rate.•N use efficiency and N nutrition index depend on %Nc variability and uncertainty. |
---|---|
AbstractList | Multiple critical N dilution curves [CNDCs] have been previously developed for potato; however, attempts to directly compare differences in CNDCs across genotype [G], environment [E], and management [M] interactions have been confounded by non-uniform statistical methods, biased experimental data, and lack of proper quantification of uncertainty in the critical N concentration [%Nc]. This study implements a partially-pooled Bayesian hierarchical method to develop CNDCs for previously published and newly reported experimental data, systematically evaluates the difference in %Nc [∆%Nc] across G × E × M effects, and directly compare CNDCs from the Bayesian framework to CNDCs from conventional statistical methods. The partially-pooled Bayesian hierarchical method implemented in this study has the advantage of being less susceptible to inferential bias at the level of individual G × E × M interactions compared to alternative statistical methods that result from insufficient quantity and quality of experimental datasets (e.g., unbalanced distribution of N limiting and non-N limiting observations). This method also allows for a direct statistical comparison of differences in %Nc across levels of the G × E × M interactions. Where found to be significant, ∆%Nc was hypothesized to be related to variation in the timing of tuber initiation (e.g., maturity class) and the relative rate of tuber bulking (e.g., planting density) across G x E × M interactions. In addition to using the median value for %Nc (i.e., CNDC), the lower and upper boundary values for the credible region (i.e., CNDCₗₒ and CNDCᵤₚ) derived using the Bayesian framework should be used in calculation of N nutrition index (and other calculations) to account for uncertainty in %Nc. Overall, this study provides additional evidence that%Nc is dependent upon G × E × M interactions; therefore, evaluation of crop N status or N use efficiency must account for variation in %Nc across G × E × M interactions. Multiple critical N dilution curves [CNDCs] have been previously developed for potato; however, attempts to directly compare differences in CNDCs across genotype [G], environment [E], and management [M] interactions have been confounded by non-uniform statistical methods, biased experimental data, and lack of proper quantification of uncertainty in the critical N concentration [%Nc]. This study implements a partially-pooled Bayesian hierarchical method to develop CNDCs for previously published and newly reported experimental data, systematically evaluates the difference in %Nc [∆%Nc] across G × E × M effects, and directly compare CNDCs from the Bayesian framework to CNDCs from conventional statistical methods. The partially-pooled Bayesian hierarchical method implemented in this study has the advantage of being less susceptible to inferential bias at the level of individual G × E × M interactions compared to alternative statistical methods that result from insufficient quantity and quality of experimental datasets (e.g., unbalanced distribution of N limiting and non-N limiting observations). This method also allows for a direct statistical comparison of differences in %Nc across levels of the G × E × M interactions. Where found to be significant, ∆%Nc was hypothesized to be related to variation in the timing of tuber initiation (e.g., maturity class) and the relative rate of tuber bulking (e.g., planting density) across G x E × M interactions. In addition to using the median value for %Nc (i.e., CNDC), the lower and upper boundary values for the credible region (i.e., CNDClo and CNDCup) derived using the Bayesian framework should be used in calculation of N nutrition index (and other calculations) to account for uncertainty in %Nc. Overall, this study provides additional evidence that%Nc is dependent upon G × E × M interactions; therefore, evaluation of crop N status or N use efficiency must account for variation in %Nc across G × E × M interactions. •Critical N dilution curves [CNDCs] for potato are subject to G x E x M effects.•Bayesian methods can quantify uncertainty in critical N concentration [%Nc].•Partial pooling Bayesian method enables direct comparison of G x E x M effects.•Variation in %Nc for potato due to tuber initiation timing and tuber bulking rate.•N use efficiency and N nutrition index depend on %Nc variability and uncertainty. |
ArticleNumber | 126744 |
Author | Rosen, Carl J. Ben Abdallah, Feriel Giletto, Claudia Miao, Yuxin Bélanger, Gilles Mulla, David J. Culshaw-Maurer, Michael J. Bohman, Brian J. Fernández, Fabián G. |
Author_xml | – sequence: 1 givenname: Brian J. surname: Bohman fullname: Bohman, Brian J. email: bohm0072@umn.edu organization: Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN 55108, USA – sequence: 2 givenname: Michael J. surname: Culshaw-Maurer fullname: Culshaw-Maurer, Michael J. organization: CyVerse, University of Arizona, Tuscon, AZ, USA – sequence: 3 givenname: Feriel surname: Ben Abdallah fullname: Ben Abdallah, Feriel organization: Productions in Agriculture Department, Crop Production Unit, Walloon Agricultural Research Centre (CRA-W), Gembloux, Belgium – sequence: 4 givenname: Claudia surname: Giletto fullname: Giletto, Claudia organization: Unidad Integrada Balcarce, Facultad de Ciencias Agrarias (UNMdP)-INTA Balcarce, Ruta 226km 73,5, 7620 Balcarce, Buenos Aires, Argentina – sequence: 5 givenname: Gilles surname: Bélanger fullname: Bélanger, Gilles organization: Science and Technology Branch, Agriculture and Agri-Food Canada, Québec, Canada – sequence: 6 givenname: Fabián G. surname: Fernández fullname: Fernández, Fabián G. organization: Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN 55108, USA – sequence: 7 givenname: Yuxin surname: Miao fullname: Miao, Yuxin organization: Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN 55108, USA – sequence: 8 givenname: David J. surname: Mulla fullname: Mulla, David J. organization: Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN 55108, USA – sequence: 9 givenname: Carl J. surname: Rosen fullname: Rosen, Carl J. organization: Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN 55108, USA |
BookMark | eNp9kLFuFDEQhi0UJJLAA9C5pNmLvd61b0UFUUiQAggpqa05e8z55FsvtjfS9bxD2jxL8mL4clQUqWaK-f7R_52QozGOSMh7zhaccXm2WeAGFi1rxYK3UnXdK3LMl0o0Sgh-VHcuecME42_ISc4bxtiy7btj8ufnDGPxbufHX9QkX7yBQL9T68NcfBypmdMdZgomxZzpJX26pxePD0_3jw_fKDqHpmTqYqJTLFAinfM-COgEqXgIYddMMQa09DPsMHsY6dpjgmTWz4-2WNbRviWvHYSM7_7NU3L75eLm_Kq5_nH59fzTdWPari-NlQK4GGx9a8CsGBiOTK5sL1wvnWNMdgNbLpVyDgbF-xVysNJ0TA3KDrgSp-TDIXdK8feMueitzwZDgBHjnLVou5b1QipVT9Xh9Ll3QqeNrwWrkZLAB82Z3nvXG1296713ffBeSf4fOSW_hbR7kfl4YLC2v6uCdDYeR4PWp2pY2-hfoP8C0NuiFQ |
CitedBy_id | crossref_primary_10_1016_j_fcr_2024_109713 crossref_primary_10_3390_agronomy14112653 crossref_primary_10_1016_j_eja_2024_127483 crossref_primary_10_1016_j_fcr_2024_109492 crossref_primary_10_1016_j_eja_2023_127026 crossref_primary_10_1007_s12230_025_09984_8 crossref_primary_10_1016_j_cj_2025_01_009 crossref_primary_10_1016_j_eja_2024_127397 crossref_primary_10_1016_j_eja_2023_127079 crossref_primary_10_1007_s11540_023_09644_6 |
Cites_doi | 10.1038/s41597-022-01395-2 10.1007/BF02853657 10.32614/RJ-2018-017 10.1175/JCLI-D-16-0758.1 10.1016/j.fcr.2014.08.005 10.1098/rstb.1977.0140 10.1016/j.agrformet.2017.03.012 10.2134/agronj2018.05.0350 10.4236/ajps.2015.619306 10.2307/2532087 10.1214/20-BA1221 10.1023/A:1004783431055 10.2134/agronj1981.00021962007300050013x 10.1037/met0000275 10.1016/j.eja.2021.126380 10.3390/rs13163322 10.1007/BF02365158 10.3390/agronomy11020255 10.1017/S0021859600062651 10.1016/j.eja.2020.126202 10.3390/foods9030352 10.1007/s11540-016-9331-y 10.1007/BF02853925 10.1007/s13593-019-0570-6 10.1016/j.eja.2010.01.005 10.1007/BF02884344 10.1017/S0021859600046359 10.2134/agronj1986.00021962007800020010x 10.2134/agronj1998.00021962009000010003x 10.1016/j.eja.2022.126568 10.1093/oxfordjournals.aob.a086875 10.13031/2013.35914 10.1071/FP17303 10.2134/agronj2004.1131 10.3389/fpls.2019.00300 10.2134/agronj2017.02.0112 10.1016/j.eja.2021.126315 10.1007/BF02198111 10.1002/csc2.20297 10.1016/j.fcr.2014.05.006 10.18637/jss.v080.i01 10.1093/oxfordjournals.aob.a088044 10.1007/BF02874766 10.1007/978-3-030-39157-7_3 10.18637/jss.v076.i01 10.3390/plants9101309 10.2134/agronj14.0402 10.1006/anbo.1994.1133 10.1016/j.eja.2006.10.001 10.1017/S0021859600028598 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.eja.2023.126744 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1873-7331 |
ExternalDocumentID | 10_1016_j_eja_2023_126744 S1161030123000126 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPCBC SSA SSZ T5K UHS ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c245t-d63a139deffcacb0ac1e06bd53f56ff0064908877ffa9715be1ad6c40797d9eb3 |
IEDL.DBID | .~1 |
ISSN | 1161-0301 |
IngestDate | Fri Aug 22 20:36:47 EDT 2025 Tue Jul 01 00:42:58 EDT 2025 Thu Apr 24 23:06:00 EDT 2025 Fri Feb 23 02:35:33 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CNUtEC E G NNI Critical N concentration NNIup M NPlant EONR Nitrogen use efficiency Potato CNDClo Nc W Genotype-by-environment-by-management interactions NUE NNIlo CNUC Critical nitrogen dilution curve Bayesian CNDC Nitrogen nutrition index NUpE NUtEc CNDCup NUtE |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c245t-d63a139deffcacb0ac1e06bd53f56ff0064908877ffa9715be1ad6c40797d9eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 3242053677 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3242053677 crossref_citationtrail_10_1016_j_eja_2023_126744 crossref_primary_10_1016_j_eja_2023_126744 elsevier_sciencedirect_doi_10_1016_j_eja_2023_126744 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2023 2023-03-00 20230301 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
PublicationDecade | 2020 |
PublicationTitle | European journal of agronomy |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bremner, Taha (bib16) 1966; 66 Stefaniak, Fitzcollins, Figueroa, Thompson, Schmitz Carley, Shannon (bib77) 2021; 11 Duchenne, Machet, Martin (bib26) 1997 Bates, D.M. 2010. Stark, J.C., Thompson, A.L., Novy, R., 2020. Variety Selection and Management. In: Stark, J. C., Thornton, M., Nolte, P. (Eds.), Potato Production Systems. pp. 35–64. Bélanger, Walsh, Richards, Milburn, Ziadi (bib10) 2001; 78 Rosen, C., J. Crants, B. Bohman, and M. McNearney. 2021. Effects of Banded Versus Broadcast Application of ESN, Turkey Manure, and Different Approaches to Measuring Plant N Status on Tuber Yield and Quality in Russet Burbank Potatoes. Reserach Reports – 2021. Fargo, ND: Minnesota Area II Potato Research and Promotion Council and Northern Plains Potato Growers Association. Retrieved from Herrmann, Taube (bib41) 2004; 96 Makowski, Zhao, Ata-Ul-Karim, Lemaire (bib56) 2020 Lemaire, Gastal (bib51) 1997 Errebhi, Rosen, Gupta, Birong (bib28) 1998; 90 Ushey, K. 2021. renv: Project Environments. Retrieved from Gastal, Lemaire, Durand (bib33) 2015 Rosen, C., M. Errebhi, J. Moncrief, S. Gupta, H.H. Cheng, and D. Birong. 1993. Nitrogen Fertilization Studies on Irrigated Potatoes: Nitrogen Use, Soil Nitrate Movement, and Petiole Sap Nitrate Analysis for Predicting Nitrogen Needs. Field Research in Soil Science – Soil Series #136. St. Paul, MN: University of Minnesota. Retrieved from Benoit, Grant, Devine (bib13) 1986; 78 Franzen, D., A. Robinson, and C. Rosen. 2018. Fertilizing Potato in North Dakota. SF715. Fargo, ND: North Dakota State University. Retrieved from Ben Abdallah, Olivier, Goffart, Minet (bib11) 2016; 59 Crants, J., C. Rosen, M. McNearney, and L. Sun. 2017. The Use of Chlorophyll Meters for Nitrogen Management in Potatoes. Research Reports – 2017. Fargo, ND: Minnesota Area II Potato Research and Promotion Council and Northern Plains Potato Growers Association. Retrieved from Bürkner (bib18) 2018; 10 Bennett, Tibbitts, Cao (bib12) 1991; 68 Justes, Mary, Meynard, Machet, Thelier-Huche (bib47) 1994; 74 Vehtari, Gelman, Simpson, Carpenter, Bürkner (bib86) 2021; 16 Bohman, B.J., M. McNearney, J. Crants, and C.J. Rosen. 2020. A Novel Approach to Manage Nitrogen Fertilizer for Potato Production Using Remote Sensing. Research Reports – 2020. Fargo, ND: Minnesota Area II Potato Research and Promotion Council and Northern Plains Potato Growers Association. Retrieved from (bib24) 2021 Horneck, Miller (bib42) 1998 Bélanger, Walsh, Richards, Milburn, Ziadi (bib9) 2001; 78 Fernández, Lemaire, Bélanger, Gastal, Makowski, Ciampitti (bib31) 2021; 131 Wright, J. 2002. Irrigation Scheduling Checkbook Method. BU-FO-01322. St. Paul, MN: University of Minnesota. Retrieved from Schad, Betancourt, Vasishth (bib71) 2021; 26 R Core Team. 2021b. "stats": The R Stats Package. Retrieved from Greenwood, Lemaire, Gosse, Cruz, Draycott, Neeteson (bib38) 1990; 66 Slater (bib73) 1968; 11 Gupta, S., and C.J. Rosen. 2019. Nitrogen Fertilization Rate and Cold-Induced Sweetening in Potato Tubers During Storage. Research Reports – 2019. Fargo, ND: Minnesota Area II Potato Research and Promotion Council and Northern Plains Potato Growers Association. Retrieved from Ifenkwe, Allen (bib45) 1978; 91 St. Paul, MN: University of Minnesota. Retrieved from Sun, N. 2017. Agronomic and Storage Factors Affecting Acrylamide Formation in Processed Potatoes. (Ph.D.). University of Minnesota, St. Paul, MN. Retrieved from Gupta, S.K., J. Crants, M. McNearney, and C.J. Rosen. 2020. Evaluation of a Promising Minnesota Clone for N Response, Agronomic Traits & Storage Quality. Research Reports – 2020. Fargo, ND: Minnesota Area II Potato Research and Promotion Council and Northern Plains Potato Growers Association. Retrieved from Li, Miao, Gupta, Rosen, Yuan, Wang, Wang, Huang (bib53) 2021; 13 Gelaro, McCarty, Suarez, Todling, Molod, Takacs, Randles, Darmenov, Bosilovich, Reichle, Wargan, Coy, Cullather, Draper, Akella, Buchard, Conaty, da Silva, Gu, Kim, Koster, Lucchesi, Merkova, Nielsen, Partyka, Pawson, Putman, Rienecker, Schubert, Sienkiewicz, Zhao (bib34) 2017; Volume 30 Sinclair, Muchow (bib74) 1999; 65 Porter, G. 2014. 201400091. USDA PVPO. Carpenter, Gelman, Hoffman, Lee, Goodrich, Betancourt, Brubaker, Guo, Li, Riddell (bib19) 2017; 76 Greenwood, Neeteson, Draycott (bib37) 1986; 91 Monteith (bib59) 1977; 281 . Kleinkopf, Westermann, Dwelle (bib49) 1981; 73 McElreath (bib57) 2020 Tiwari, Plett, Garnett, Chakrabarti, Singh (bib83) 2018; 45 Ciampitti, Fernandez, Tamagno, Zhao, Lemaire, Makowski (bib22) 2021; 123 Morris, Murrell, Beegle, Camberato, Ferguson, Grove, Ketterings, Kyveryga, Laboski, McGrath, Meisinger, Melkonian, Moebius-Clune, Nafziger, Osmond, Sawyer, Scharf, Smith, Spargo, van Es, Yang (bib61) 2018; 110 Thornton (bib82) 2020 CFIA. 2013. Bintje: Canadian Food Inspection Agency. Retrieved from Lizana, Avila, Tolaba, Martinez (bib55) 2017; 239 Sun, Wang, Gupta, Rosen (bib79) 2019; 111 Fernandez, van Versendaal, Lacasa, Makowski, Lemaire, Ciampitti (bib30) 2022; 139 Rosen, C.J. 2018. Potato Fertilization on Irrigated Soils: University of Minnesota Extension. Retrieved from Ewing, Struik (bib29) 1992; Volume 14 Giletto, Reussi Calvo, Sandaña, Echeverría, Bélanger (bib36) 2020 Barraclough, Howarth, Jones, Lopez-Bellido, Parmar, Shepherd, Hawkesford (bib5) 2010; 33 Ciampitti, van Versendaal, Rybecky, Lacasa, Fernandez, Makowski, Lemaire (bib21) 2022; 9 Bohman, Rosen, Mulla (bib15) 2021 Houlès, Guérif, Mary (bib44) 2007; 27 Plénet, Lemaire (bib62) 2000; 216 Jones, Michaels, Carley, Rosen, Shannon (bib46) 2021; 61 Rosen, C., D. Birong, and M. Zumwinkle. 1992. Nitrogen Fertilization Studies on Irrigated Potatoes: Nitrogen Use, Soil Nitrate Movement, and Petiole Sap Nitrate Analysis for Predicting Nitrogen Needs. OSU. 2021. Potato Variety Identification and Ownership Table: Oregon State University – Oregon Seed Certification Service. Retrieved from Bélanger, Walsh, Richards, Milburn, Ziadi (bib8) 2000; 77 Caviglia, Melchiori, Sadras (bib20) 2014; 168 Yao, Wang, Lemaire, Makowski, Cao, Liu, Liu, Liu, Zhu, Cao, Tang (bib88) 2021; 128 Steele, Scherer, Wright, Hopkins, Tuscherer, Wright (bib76) 2010; 26 Sun, Wang, Gupta, Rosen (bib80) 2020; 9 Weather Spark. 2021. Compare the Climate and Weather in Becker, Saint-Léonard, Balcarce, and Gembloux. Retrieved from Plummer, M. 2019. Rjags: Bayesian Graphical Models Using Mcmc. Retrieved from Lindstrom, Bates (bib54) 1990; 46 Sadras, Lemaire (bib70) 2014; 164 Bürkner (bib17) 2017; 80 Lemaire, Sinclair, Sadras, Bélanger (bib52) 2019; 39 Kim, Lee (bib48) 2019; 10 Thompson, A. 2013. 201300475. USDA PVPO. Egel, D.S. 2017. Midwest Vegetable Production Guide for Commercial Growers. Giletto, Echeverría (bib35) 2015; 06 Lemaire, Ciampitti (bib50) 2020; 9 Vander Zaag, Demagante, Ewing (bib85) 1990; 33 University of Minnesota Extension. Retrieved from Allen, Scott (bib1) 1980; 94 AHDB. 2015. Charlotte: Agriculture and Horticulture Development Board. Retrieved from Menzel (bib58) 1985; 55 Plummer, M. 2013. jags: Just Another Gibs Sampler. Retrieved from USDA. 1997. United States Standards for Grades of Potatoes for Processing. Retrieved from Horwitz, Chichilo, Reynolds (bib43) 1970 Morier, Cambouris, Chokmani (bib60) 2015; 107 Jones (10.1016/j.eja.2023.126744_bib46) 2021; 61 Kleinkopf (10.1016/j.eja.2023.126744_bib49) 1981; 73 Morris (10.1016/j.eja.2023.126744_bib61) 2018; 110 Bohman (10.1016/j.eja.2023.126744_bib15) 2021 Errebhi (10.1016/j.eja.2023.126744_bib28) 1998; 90 Lemaire (10.1016/j.eja.2023.126744_bib50) 2020; 9 Schad (10.1016/j.eja.2023.126744_bib71) 2021; 26 Herrmann (10.1016/j.eja.2023.126744_bib41) 2004; 96 Lizana (10.1016/j.eja.2023.126744_bib55) 2017; 239 Morier (10.1016/j.eja.2023.126744_bib60) 2015; 107 10.1016/j.eja.2023.126744_bib63 10.1016/j.eja.2023.126744_bib64 10.1016/j.eja.2023.126744_bib65 10.1016/j.eja.2023.126744_bib66 Steele (10.1016/j.eja.2023.126744_bib76) 2010; 26 10.1016/j.eja.2023.126744_bib23 10.1016/j.eja.2023.126744_bib67 Lemaire (10.1016/j.eja.2023.126744_bib51) 1997 10.1016/j.eja.2023.126744_bib68 10.1016/j.eja.2023.126744_bib25 10.1016/j.eja.2023.126744_bib69 Bélanger (10.1016/j.eja.2023.126744_bib8) 2000; 77 Greenwood (10.1016/j.eja.2023.126744_bib37) 1986; 91 Fernández (10.1016/j.eja.2023.126744_bib31) 2021; 131 McElreath (10.1016/j.eja.2023.126744_bib57) 2020 Yao (10.1016/j.eja.2023.126744_bib88) 2021; 128 Duchenne (10.1016/j.eja.2023.126744_bib26) 1997 Horwitz (10.1016/j.eja.2023.126744_bib43) 1970 Allen (10.1016/j.eja.2023.126744_bib1) 1980; 94 Plénet (10.1016/j.eja.2023.126744_bib62) 2000; 216 Caviglia (10.1016/j.eja.2023.126744_bib20) 2014; 168 Fernandez (10.1016/j.eja.2023.126744_bib30) 2022; 139 Bremner (10.1016/j.eja.2023.126744_bib16) 1966; 66 Carpenter (10.1016/j.eja.2023.126744_bib19) 2017; 76 Giletto (10.1016/j.eja.2023.126744_bib35) 2015; 06 10.1016/j.eja.2023.126744_bib14 Tiwari (10.1016/j.eja.2023.126744_bib83) 2018; 45 (10.1016/j.eja.2023.126744_bib24) 2021 Gastal (10.1016/j.eja.2023.126744_bib33) 2015 Sadras (10.1016/j.eja.2023.126744_bib70) 2014; 164 10.1016/j.eja.2023.126744_bib81 Bélanger (10.1016/j.eja.2023.126744_bib9) 2001; 78 Thornton (10.1016/j.eja.2023.126744_bib82) 2020 Benoit (10.1016/j.eja.2023.126744_bib13) 1986; 78 10.1016/j.eja.2023.126744_bib40 10.1016/j.eja.2023.126744_bib84 Ewing (10.1016/j.eja.2023.126744_bib29) 1992; Volume 14 Horneck (10.1016/j.eja.2023.126744_bib42) 1998 Lemaire (10.1016/j.eja.2023.126744_bib52) 2019; 39 Menzel (10.1016/j.eja.2023.126744_bib58) 1985; 55 10.1016/j.eja.2023.126744_bib87 Bürkner (10.1016/j.eja.2023.126744_bib18) 2018; 10 Monteith (10.1016/j.eja.2023.126744_bib59) 1977; 281 Bürkner (10.1016/j.eja.2023.126744_bib17) 2017; 80 10.1016/j.eja.2023.126744_bib39 Bennett (10.1016/j.eja.2023.126744_bib12) 1991; 68 Houlès (10.1016/j.eja.2023.126744_bib44) 2007; 27 Ben Abdallah (10.1016/j.eja.2023.126744_bib11) 2016; 59 Makowski (10.1016/j.eja.2023.126744_bib56) 2020 Vander Zaag (10.1016/j.eja.2023.126744_bib85) 1990; 33 Lindstrom (10.1016/j.eja.2023.126744_bib54) 1990; 46 Ciampitti (10.1016/j.eja.2023.126744_bib21) 2022; 9 Greenwood (10.1016/j.eja.2023.126744_bib38) 1990; 66 Bélanger (10.1016/j.eja.2023.126744_bib10) 2001; 78 Ifenkwe (10.1016/j.eja.2023.126744_bib45) 1978; 91 Gelaro (10.1016/j.eja.2023.126744_bib34) 2017; Volume 30 Slater (10.1016/j.eja.2023.126744_bib73) 1968; 11 Ciampitti (10.1016/j.eja.2023.126744_bib22) 2021; 123 10.1016/j.eja.2023.126744_bib72 Kim (10.1016/j.eja.2023.126744_bib48) 2019; 10 Justes (10.1016/j.eja.2023.126744_bib47) 1994; 74 10.1016/j.eja.2023.126744_bib75 10.1016/j.eja.2023.126744_bib32 Giletto (10.1016/j.eja.2023.126744_bib36) 2020 10.1016/j.eja.2023.126744_bib78 Vehtari (10.1016/j.eja.2023.126744_bib86) 2021; 16 Sinclair (10.1016/j.eja.2023.126744_bib74) 1999; 65 10.1016/j.eja.2023.126744_bib27 10.1016/j.eja.2023.126744_bib2 Li (10.1016/j.eja.2023.126744_bib53) 2021; 13 Barraclough (10.1016/j.eja.2023.126744_bib5) 2010; 33 Sun (10.1016/j.eja.2023.126744_bib79) 2019; 111 Stefaniak (10.1016/j.eja.2023.126744_bib77) 2021; 11 Sun (10.1016/j.eja.2023.126744_bib80) 2020; 9 10.1016/j.eja.2023.126744_bib7 10.1016/j.eja.2023.126744_bib6 10.1016/j.eja.2023.126744_bib3 10.1016/j.eja.2023.126744_bib4 |
References_xml | – volume: 9 start-page: 277 year: 2022 ident: bib21 article-title: A global dataset to parametrize critical nitrogen dilution curves for major crop species publication-title: Sci. Data – volume: 139 year: 2022 ident: bib30 article-title: Dataset characteristics for the determination of critical nitrogen dilution curves: from past to new guidelines publication-title: Eur. J. Agron. – volume: 78 start-page: 109 year: 2001 end-page: 117 ident: bib10 article-title: Tuber growth and biomass partitioning of two potato cultivars grown under different N fertilization rates with and without irrigation publication-title: Am. J. Potato Res. – volume: 61 start-page: 878 year: 2021 end-page: 895 ident: bib46 article-title: Nitrogen uptake and utilization in advanced fresh-market red potato breeding lines publication-title: Crop Sci. – reference: Bohman, B.J., M. McNearney, J. Crants, and C.J. Rosen. 2020. A Novel Approach to Manage Nitrogen Fertilizer for Potato Production Using Remote Sensing. Research Reports – 2020. Fargo, ND: Minnesota Area II Potato Research and Promotion Council and Northern Plains Potato Growers Association. Retrieved from 〈 – volume: 107 start-page: 1295 year: 2015 end-page: 1309 ident: bib60 article-title: In-season nitrogen status assessment and yield estimation using hyperspectral vegetation indices in a potato crop publication-title: Agron. J. – volume: 26 start-page: 103 year: 2021 end-page: 126 ident: bib71 article-title: Toward a principled bayesian workflow in cognitive science publication-title: Psychol. Methods – volume: 59 start-page: 241 year: 2016 end-page: 258 ident: bib11 article-title: Establishing the nitrogen dilution curve for potato cultivar bintje in Belgium publication-title: Potato Res. – volume: Volume 30 start-page: 5419 year: 2017 end-page: 5454 ident: bib34 article-title: The modern-era retrospective analysis for research and applications, version 2 (Merra-2) publication-title: J. Clim. – reference: Weather Spark. 2021. Compare the Climate and Weather in Becker, Saint-Léonard, Balcarce, and Gembloux. Retrieved from 〈 – volume: 78 start-page: 355 year: 2001 end-page: 364 ident: bib9 article-title: Critical nitrogen curve and nitrogen nutrition index for potato in eastern Canada publication-title: Am. J. Potato Res – volume: 77 start-page: 11 year: 2000 end-page: 21 ident: bib8 article-title: Yield response of two potato culivars to supplemental irrigation and N fertilization in new brunswick publication-title: Am. J. Potato Res. – volume: 91 start-page: 265 year: 1978 end-page: 278 ident: bib45 article-title: Effects of row width and planting density on growth and yield of two maincrop potato varieties. 1. Plant morphology and dry-matter accumulation publication-title: J. Agric. Sci. – volume: 281 start-page: 277 year: 1977 end-page: 294 ident: bib59 article-title: Climate and the efficiency of crop production in Britain publication-title: Philos. Trans. R. Soc. Lond. B – volume: 73 start-page: 799 year: 1981 end-page: 802 ident: bib49 article-title: Dry matter production and nitrogen utilization by six potato cultivars publication-title: Agron. J. – volume: 239 start-page: 192 year: 2017 end-page: 201 ident: bib55 article-title: Field responses of potato to increased temperature during tuber bulking: projection for climate change scenarios, at high-yield environments of southern chile publication-title: Agric. . Meteorol. – year: 2021 ident: bib24 article-title: R: A Language and Environment for Statistical Computing – reference: : University of Minnesota Extension. Retrieved from 〈 – reference: Rosen, C., M. Errebhi, J. Moncrief, S. Gupta, H.H. Cheng, and D. Birong. 1993. Nitrogen Fertilization Studies on Irrigated Potatoes: Nitrogen Use, Soil Nitrate Movement, and Petiole Sap Nitrate Analysis for Predicting Nitrogen Needs. Field Research in Soil Science – Soil Series #136. St. Paul, MN: University of Minnesota. Retrieved from 〈 – start-page: 119 year: 1997 end-page: 130 ident: bib26 article-title: Potatoes publication-title: Diagonsis of the Nitrogen Status in Crops – volume: 66 start-page: 425 year: 1990 end-page: 436 ident: bib38 article-title: Decline in percentage N of C3 and C4 crops with increasing plant mass publication-title: Ann. Bot. – volume: 11 start-page: 255 year: 2021 ident: bib77 article-title: Genotype and variable nitrogen effects on tuber yield and quality for red fresh market potatoes in Minnesota publication-title: Agronomy – reference: Porter, G. 2014. 201400091. USDA PVPO. – volume: 33 year: 1990 ident: bib85 article-title: Influence of plant spacing on potato (Solanum tuberosum L.) morphology, growth and yield under two contrasting environments publication-title: Potato Res. – reference: 〉. – reference: Bates, D.M. 2010. – volume: 13 year: 2021 ident: bib53 article-title: Improving potato yield prediction by combining cultivar information and uav remote sensing data using machine learning publication-title: Remote Sens. – volume: Volume 14 start-page: 89 year: 1992 end-page: 198 ident: bib29 article-title: Tuber formation in potato: induction, initiation, and growth publication-title: Horticultural Reviews – volume: 06 start-page: 3144 year: 2015 end-page: 3156 ident: bib35 article-title: Critical nitrogen dilution curve in processing potato cultivars publication-title: Am. J. Plant Sci. – reference: Crants, J., C. Rosen, M. McNearney, and L. Sun. 2017. The Use of Chlorophyll Meters for Nitrogen Management in Potatoes. Research Reports – 2017. Fargo, ND: Minnesota Area II Potato Research and Promotion Council and Northern Plains Potato Growers Association. Retrieved from 〈 – volume: 110 start-page: 1 year: 2018 ident: bib61 article-title: Strengths and limitations of nitrogen rate recommendations for corn and opportunities for improvement publication-title: Agron. J. – reference: Egel, D.S. 2017. Midwest Vegetable Production Guide for Commercial Growers. – reference: Sun, N. 2017. Agronomic and Storage Factors Affecting Acrylamide Formation in Processed Potatoes. (Ph.D.). University of Minnesota, St. Paul, MN. Retrieved from 〈 – volume: 16 start-page: 667 year: 2021 end-page: 718 ident: bib86 article-title: Rank-normalization, folding, and localization: an improved R-hat for assessing convergence of MCMC (with Discussion) publication-title: Bayesian Anal. – reference: Franzen, D., A. Robinson, and C. Rosen. 2018. Fertilizing Potato in North Dakota. SF715. Fargo, ND: North Dakota State University. Retrieved from 〈 – volume: 91 start-page: 281 year: 1986 end-page: 301 ident: bib37 article-title: Quantitative relationships for the dependence of growth rate of arable crops on their nitrogen content, dry weight and aerial environment publication-title: Plant Soil – volume: 96 start-page: 1131 year: 2004 end-page: 1138 ident: bib41 article-title: The range of the critical nitrogen dilution curve for maize (Zea mays L.) can be extended until silage maturity publication-title: Agron. J. – volume: 80 year: 2017 ident: bib17 article-title: brms: an R package for bayesian multilevel models using stan publication-title: J. Stat. Softw. – start-page: 3 year: 1997 end-page: 43 ident: bib51 article-title: N uptake and distribution in plant canopies publication-title: Diagnosis of the Nitrogen Status in Crops – year: 2021 ident: bib15 article-title: Relating nitrogen use efficiency to nitrogen nutrition index for evaluation of agronomic and environmental outcomes in potato publication-title: Field Crops Res. – reference: Ushey, K. 2021. renv: Project Environments. Retrieved from 〈 – volume: 128 year: 2021 ident: bib88 article-title: Uncertainty analysis of critical nitrogen dilution curves for wheat publication-title: Eur. J. Agron. – volume: 68 start-page: 81 year: 1991 end-page: 86 ident: bib12 article-title: Diurnal temperature fluctuation effects on potatoes grown with 12 hr photoperiods publication-title: Am. Potato J. – reference: Rosen, C., J. Crants, B. Bohman, and M. McNearney. 2021. Effects of Banded Versus Broadcast Application of ESN, Turkey Manure, and Different Approaches to Measuring Plant N Status on Tuber Yield and Quality in Russet Burbank Potatoes. Reserach Reports – 2021. Fargo, ND: Minnesota Area II Potato Research and Promotion Council and Northern Plains Potato Growers Association. Retrieved from 〈 – volume: 216 start-page: 65 year: 2000 end-page: 82 ident: bib62 article-title: Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration publication-title: Plant Soil – volume: 90 start-page: 10 year: 1998 end-page: 15 ident: bib28 article-title: Potato yield response and nitrate leaching as influenced by nitrogen management publication-title: Agron. J. – reference: Rosen, C.J. 2018. Potato Fertilization on Irrigated Soils: University of Minnesota Extension. Retrieved from 〈 – reference: Plummer, M. 2013. jags: Just Another Gibs Sampler. Retrieved from 〈 – volume: 65 start-page: 215 year: 1999 end-page: 265 ident: bib74 article-title: Advances in Agronomy publication-title: Radiation Use Efficiency – volume: 45 start-page: 587 year: 2018 ident: bib83 article-title: Integrated genomics, physiology and breeding approaches for improving nitrogen use efficiency in potato: translating knowledge from other crops publication-title: Funct. Plant Biol. – year: 1970 ident: bib43 publication-title: Official Methods of Analysis of the Association of Official Analytical Chemists – volume: 111 start-page: 408 year: 2019 ident: bib79 article-title: Nitrogen fertility and cultivar effects on potato agronomic properties and acrylamide-forming potential publication-title: Agron. J. – volume: 168 start-page: 27 year: 2014 end-page: 37 ident: bib20 article-title: Nitrogen utilization efficiency in maize as affected by hybrid and N rate in late-sown crops publication-title: Field Crops Res. – volume: 78 start-page: 264 year: 1986 end-page: 269 ident: bib13 article-title: Potato top growth as influenced by day-night temperature differences publication-title: Agron. J. – reference: Rosen, C., D. Birong, and M. Zumwinkle. 1992. Nitrogen Fertilization Studies on Irrigated Potatoes: Nitrogen Use, Soil Nitrate Movement, and Petiole Sap Nitrate Analysis for Predicting Nitrogen Needs. – volume: 33 start-page: 1 year: 2010 end-page: 11 ident: bib5 article-title: Nitrogen efficiency of wheat: genotypic and environmental variation and prospects for improvement publication-title: Eur. J. Agron. – volume: 27 start-page: 1 year: 2007 end-page: 11 ident: bib44 article-title: Elaboration of a nitrogen nutrition indicator for winter wheat based on leaf area index and chlorophyll content for making nitrogen recommendations publication-title: Eur. J. Agron. – year: 2020 ident: bib56 article-title: Analyzing uncertainty in critical nitrogen dilution curves publication-title: Eur. J. Agron. – reference: Wright, J. 2002. Irrigation Scheduling Checkbook Method. BU-FO-01322. St. Paul, MN: University of Minnesota. Retrieved from 〈 – volume: 94 start-page: 583 year: 1980 end-page: 606 ident: bib1 article-title: An analysis of growth of the potato crop publication-title: J. Agr. Sci. – volume: 66 start-page: 241 year: 1966 end-page: 252 ident: bib16 article-title: Studies in potato agronomy. I. The effects of variety, seed size and spacing on growth, development and yield publication-title: J. Agric. Sci. – reference: R Core Team. 2021b. "stats": The R Stats Package. Retrieved from 〈 – reference: OSU. 2021. Potato Variety Identification and Ownership Table: Oregon State University – Oregon Seed Certification Service. Retrieved from 〈 – start-page: 75 year: 1998 end-page: 84 ident: bib42 article-title: Determination of total nitrogen in plant tissue publication-title: Handbook of Reference Methods for Plant Analysis – volume: 10 start-page: 300 year: 2019 ident: bib48 article-title: Differential mechanisms of potato yield loss induced by high day and night temperatures during tuber initiation and bulking: photosynthesis and tuber growth publication-title: Front. Plant Sci. – volume: 164 start-page: 54 year: 2014 end-page: 64 ident: bib70 article-title: Quantifying crop nitrogen status for comparisons of agronomic practices and genotypes publication-title: Field Crops Res. – volume: 26 start-page: 983 year: 2010 end-page: 996 ident: bib76 article-title: Spreadsheet implementation of irrigation scheduling by the checkbook method for North Dakota and Minnesota publication-title: Appl. Eng. Agric. – volume: 39 year: 2019 ident: bib52 article-title: Allometric approach to crop nutrition and implications for crop diagnosis and phenotyping. A review publication-title: Agron. Sustain. Dev. – volume: 74 start-page: 397 year: 1994 end-page: 407 ident: bib47 article-title: Determination of a critical nitrogen dilution curve for winter wheat crops publication-title: Ann. Bot. – volume: 9 year: 2020 ident: bib50 article-title: Crop mass and N status as prerequisite covariables for unraveling nitrogen use efficiency across genotype-by-environment-by-management scenarios: a review publication-title: Plants – volume: 10 start-page: 395 year: 2018 end-page: 411 ident: bib18 article-title: Advanced bayesian multilevel modeling with the R package brms publication-title: R. J. – volume: 9 year: 2020 ident: bib80 article-title: Potato tuber chemical properties in storage as affected by cultivar and nitrogen rate: implications for acrylamide formation publication-title: Foods – reference: Thompson, A. 2013. 201300475. USDA PVPO. – start-page: 19 year: 2020 end-page: 33 ident: bib82 article-title: Potato growth and development publication-title: Potato Production Systems – reference: Plummer, M. 2019. Rjags: Bayesian Graphical Models Using Mcmc. Retrieved from 〈 – reference: Gupta, S., and C.J. Rosen. 2019. Nitrogen Fertilization Rate and Cold-Induced Sweetening in Potato Tubers During Storage. Research Reports – 2019. Fargo, ND: Minnesota Area II Potato Research and Promotion Council and Northern Plains Potato Growers Association. Retrieved from 〈 – volume: 55 start-page: 35 year: 1985 end-page: 39 ident: bib58 article-title: Tuberization in potato at high temperatures: interaction between temperature and irradiance publication-title: Ann. Bot. – reference: . St. Paul, MN: University of Minnesota. Retrieved from 〈 – volume: 131 year: 2021 ident: bib31 article-title: Revisiting the critical nitrogen dilution curve for tall fescue: a quantitative synthesis publication-title: Eur. J. Agron. – reference: Stark, J.C., Thompson, A.L., Novy, R., 2020. Variety Selection and Management. In: Stark, J. C., Thornton, M., Nolte, P. (Eds.), Potato Production Systems. pp. 35–64. – reference: . – volume: 46 start-page: 673 year: 1990 end-page: 687 ident: bib54 article-title: Nonlinear mixed effects models for repeated measures data publication-title: Biometrics – year: 2020 ident: bib57 publication-title: Staistical Rethinking: A Bayesian Course with Examples in R and Stan – reference: USDA. 1997. United States Standards for Grades of Potatoes for Processing. Retrieved from 〈 – volume: 76 year: 2017 ident: bib19 article-title: Stan: a probabilistic programming language publication-title: J. Stat. Softw. – reference: AHDB. 2015. Charlotte: Agriculture and Horticulture Development Board. Retrieved from 〈 – start-page: 161 year: 2015 end-page: 206 ident: bib33 article-title: Quantifying Crop Responses to Nitrogen and Avenues to Improve Nitrogen-Use Efficiency publication-title: Crop Physiology – year: 2020 ident: bib36 article-title: Shoot- and tuber-based critical nitrogen dilution curves for the prediction of the N status in potato publication-title: Eur. J. Agron. – reference: Gupta, S.K., J. Crants, M. McNearney, and C.J. Rosen. 2020. Evaluation of a Promising Minnesota Clone for N Response, Agronomic Traits & Storage Quality. Research Reports – 2020. Fargo, ND: Minnesota Area II Potato Research and Promotion Council and Northern Plains Potato Growers Association. Retrieved from 〈 – reference: CFIA. 2013. Bintje: Canadian Food Inspection Agency. Retrieved from 〈 – volume: 11 start-page: 14 year: 1968 end-page: 22 ident: bib73 article-title: The effect of night temperature on tuber initiation of the potato publication-title: Eur. Potato J. – volume: 123 year: 2021 ident: bib22 article-title: Does the critical N dilution curve for maize crop vary across genotype X environment x management scenarios? - a bayesian analysis publication-title: Eur. J. Agron. – volume: 9 start-page: 277 issue: 1 year: 2022 ident: 10.1016/j.eja.2023.126744_bib21 article-title: A global dataset to parametrize critical nitrogen dilution curves for major crop species publication-title: Sci. Data doi: 10.1038/s41597-022-01395-2 – volume: 77 start-page: 11 issue: 1 year: 2000 ident: 10.1016/j.eja.2023.126744_bib8 article-title: Yield response of two potato culivars to supplemental irrigation and N fertilization in new brunswick publication-title: Am. J. Potato Res. doi: 10.1007/BF02853657 – volume: 10 start-page: 395 issue: 1 year: 2018 ident: 10.1016/j.eja.2023.126744_bib18 article-title: Advanced bayesian multilevel modeling with the R package brms publication-title: R. J. doi: 10.32614/RJ-2018-017 – volume: Volume 30 start-page: 5419 issue: Iss 13 year: 2017 ident: 10.1016/j.eja.2023.126744_bib34 article-title: The modern-era retrospective analysis for research and applications, version 2 (Merra-2) publication-title: J. Clim. doi: 10.1175/JCLI-D-16-0758.1 – year: 2020 ident: 10.1016/j.eja.2023.126744_bib57 – ident: 10.1016/j.eja.2023.126744_bib39 – volume: 168 start-page: 27 year: 2014 ident: 10.1016/j.eja.2023.126744_bib20 article-title: Nitrogen utilization efficiency in maize as affected by hybrid and N rate in late-sown crops publication-title: Field Crops Res. doi: 10.1016/j.fcr.2014.08.005 – start-page: 3 year: 1997 ident: 10.1016/j.eja.2023.126744_bib51 article-title: N uptake and distribution in plant canopies – volume: 281 start-page: 277 year: 1977 ident: 10.1016/j.eja.2023.126744_bib59 article-title: Climate and the efficiency of crop production in Britain publication-title: Philos. Trans. R. Soc. Lond. B doi: 10.1098/rstb.1977.0140 – volume: 33 issue: 313–323 year: 1990 ident: 10.1016/j.eja.2023.126744_bib85 article-title: Influence of plant spacing on potato (Solanum tuberosum L.) morphology, growth and yield under two contrasting environments publication-title: Potato Res. – volume: 239 start-page: 192 year: 2017 ident: 10.1016/j.eja.2023.126744_bib55 article-title: Field responses of potato to increased temperature during tuber bulking: projection for climate change scenarios, at high-yield environments of southern chile publication-title: Agric. . Meteorol. doi: 10.1016/j.agrformet.2017.03.012 – start-page: 119 year: 1997 ident: 10.1016/j.eja.2023.126744_bib26 article-title: Potatoes – ident: 10.1016/j.eja.2023.126744_bib40 – ident: 10.1016/j.eja.2023.126744_bib63 – volume: 111 start-page: 408 issue: 1 year: 2019 ident: 10.1016/j.eja.2023.126744_bib79 article-title: Nitrogen fertility and cultivar effects on potato agronomic properties and acrylamide-forming potential publication-title: Agron. J. doi: 10.2134/agronj2018.05.0350 – ident: 10.1016/j.eja.2023.126744_bib25 – ident: 10.1016/j.eja.2023.126744_bib67 – volume: 06 start-page: 3144 issue: 19 year: 2015 ident: 10.1016/j.eja.2023.126744_bib35 article-title: Critical nitrogen dilution curve in processing potato cultivars publication-title: Am. J. Plant Sci. doi: 10.4236/ajps.2015.619306 – ident: 10.1016/j.eja.2023.126744_bib4 – ident: 10.1016/j.eja.2023.126744_bib32 – volume: 46 start-page: 673 issue: 3 year: 1990 ident: 10.1016/j.eja.2023.126744_bib54 article-title: Nonlinear mixed effects models for repeated measures data publication-title: Biometrics doi: 10.2307/2532087 – volume: 16 start-page: 667 issue: 2 year: 2021 ident: 10.1016/j.eja.2023.126744_bib86 article-title: Rank-normalization, folding, and localization: an improved R-hat for assessing convergence of MCMC (with Discussion) publication-title: Bayesian Anal. doi: 10.1214/20-BA1221 – start-page: 118 year: 2020 ident: 10.1016/j.eja.2023.126744_bib56 article-title: Analyzing uncertainty in critical nitrogen dilution curves publication-title: Eur. J. Agron. – start-page: 19 year: 2020 ident: 10.1016/j.eja.2023.126744_bib82 article-title: Potato growth and development – volume: 216 start-page: 65 issue: 1/2 year: 2000 ident: 10.1016/j.eja.2023.126744_bib62 article-title: Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration publication-title: Plant Soil doi: 10.1023/A:1004783431055 – volume: 73 start-page: 799 issue: 5 year: 1981 ident: 10.1016/j.eja.2023.126744_bib49 article-title: Dry matter production and nitrogen utilization by six potato cultivars publication-title: Agron. J. doi: 10.2134/agronj1981.00021962007300050013x – volume: 26 start-page: 103 issue: 1 year: 2021 ident: 10.1016/j.eja.2023.126744_bib71 article-title: Toward a principled bayesian workflow in cognitive science publication-title: Psychol. Methods doi: 10.1037/met0000275 – volume: 131 year: 2021 ident: 10.1016/j.eja.2023.126744_bib31 article-title: Revisiting the critical nitrogen dilution curve for tall fescue: a quantitative synthesis publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2021.126380 – volume: 13 issue: 16 year: 2021 ident: 10.1016/j.eja.2023.126744_bib53 article-title: Improving potato yield prediction by combining cultivar information and uav remote sensing data using machine learning publication-title: Remote Sens. doi: 10.3390/rs13163322 – ident: 10.1016/j.eja.2023.126744_bib78 – ident: 10.1016/j.eja.2023.126744_bib68 – volume: 11 start-page: 14 issue: 1 year: 1968 ident: 10.1016/j.eja.2023.126744_bib73 article-title: The effect of night temperature on tuber initiation of the potato publication-title: Eur. Potato J. doi: 10.1007/BF02365158 – volume: 11 start-page: 255 year: 2021 ident: 10.1016/j.eja.2023.126744_bib77 article-title: Genotype and variable nitrogen effects on tuber yield and quality for red fresh market potatoes in Minnesota publication-title: Agronomy doi: 10.3390/agronomy11020255 – volume: 66 start-page: 241 issue: 2 year: 1966 ident: 10.1016/j.eja.2023.126744_bib16 article-title: Studies in potato agronomy. I. The effects of variety, seed size and spacing on growth, development and yield publication-title: J. Agric. Sci. doi: 10.1017/S0021859600062651 – volume: 123 year: 2021 ident: 10.1016/j.eja.2023.126744_bib22 article-title: Does the critical N dilution curve for maize crop vary across genotype X environment x management scenarios? - a bayesian analysis publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2020.126202 – ident: 10.1016/j.eja.2023.126744_bib64 – volume: Volume 14 start-page: 89 year: 1992 ident: 10.1016/j.eja.2023.126744_bib29 article-title: Tuber formation in potato: induction, initiation, and growth – volume: 9 issue: 3 year: 2020 ident: 10.1016/j.eja.2023.126744_bib80 article-title: Potato tuber chemical properties in storage as affected by cultivar and nitrogen rate: implications for acrylamide formation publication-title: Foods doi: 10.3390/foods9030352 – ident: 10.1016/j.eja.2023.126744_bib81 – ident: 10.1016/j.eja.2023.126744_bib3 – volume: 59 start-page: 241 issue: 3 year: 2016 ident: 10.1016/j.eja.2023.126744_bib11 article-title: Establishing the nitrogen dilution curve for potato cultivar bintje in Belgium publication-title: Potato Res. doi: 10.1007/s11540-016-9331-y – volume: 68 start-page: 81 year: 1991 ident: 10.1016/j.eja.2023.126744_bib12 article-title: Diurnal temperature fluctuation effects on potatoes grown with 12 hr photoperiods publication-title: Am. Potato J. doi: 10.1007/BF02853925 – ident: 10.1016/j.eja.2023.126744_bib7 – ident: 10.1016/j.eja.2023.126744_bib14 – volume: 39 issue: 2 year: 2019 ident: 10.1016/j.eja.2023.126744_bib52 article-title: Allometric approach to crop nutrition and implications for crop diagnosis and phenotyping. A review publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-019-0570-6 – year: 2021 ident: 10.1016/j.eja.2023.126744_bib24 – volume: 33 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.eja.2023.126744_bib5 article-title: Nitrogen efficiency of wheat: genotypic and environmental variation and prospects for improvement publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2010.01.005 – volume: 78 start-page: 355 issue: 5 year: 2001 ident: 10.1016/j.eja.2023.126744_bib9 article-title: Critical nitrogen curve and nitrogen nutrition index for potato in eastern Canada publication-title: Am. J. Potato Res doi: 10.1007/BF02884344 – volume: 91 start-page: 265 issue: 2 year: 1978 ident: 10.1016/j.eja.2023.126744_bib45 article-title: Effects of row width and planting density on growth and yield of two maincrop potato varieties. 1. Plant morphology and dry-matter accumulation publication-title: J. Agric. Sci. doi: 10.1017/S0021859600046359 – volume: 78 start-page: 264 issue: 2 year: 1986 ident: 10.1016/j.eja.2023.126744_bib13 article-title: Potato top growth as influenced by day-night temperature differences publication-title: Agron. J. doi: 10.2134/agronj1986.00021962007800020010x – volume: 90 start-page: 10 year: 1998 ident: 10.1016/j.eja.2023.126744_bib28 article-title: Potato yield response and nitrate leaching as influenced by nitrogen management publication-title: Agron. J. doi: 10.2134/agronj1998.00021962009000010003x – ident: 10.1016/j.eja.2023.126744_bib23 – volume: 65 start-page: 215 year: 1999 ident: 10.1016/j.eja.2023.126744_bib74 article-title: Advances in Agronomy – start-page: 262 year: 2021 ident: 10.1016/j.eja.2023.126744_bib15 article-title: Relating nitrogen use efficiency to nitrogen nutrition index for evaluation of agronomic and environmental outcomes in potato publication-title: Field Crops Res. – volume: 139 year: 2022 ident: 10.1016/j.eja.2023.126744_bib30 article-title: Dataset characteristics for the determination of critical nitrogen dilution curves: from past to new guidelines publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2022.126568 – volume: 55 start-page: 35 issue: 1 year: 1985 ident: 10.1016/j.eja.2023.126744_bib58 article-title: Tuberization in potato at high temperatures: interaction between temperature and irradiance publication-title: Ann. Bot. doi: 10.1093/oxfordjournals.aob.a086875 – volume: 26 start-page: 983 year: 2010 ident: 10.1016/j.eja.2023.126744_bib76 article-title: Spreadsheet implementation of irrigation scheduling by the checkbook method for North Dakota and Minnesota publication-title: Appl. Eng. Agric. doi: 10.13031/2013.35914 – volume: 45 start-page: 587 issue: 6 year: 2018 ident: 10.1016/j.eja.2023.126744_bib83 article-title: Integrated genomics, physiology and breeding approaches for improving nitrogen use efficiency in potato: translating knowledge from other crops publication-title: Funct. Plant Biol. doi: 10.1071/FP17303 – ident: 10.1016/j.eja.2023.126744_bib27 – volume: 96 start-page: 1131 issue: 4 year: 2004 ident: 10.1016/j.eja.2023.126744_bib41 article-title: The range of the critical nitrogen dilution curve for maize (Zea mays L.) can be extended until silage maturity publication-title: Agron. J. doi: 10.2134/agronj2004.1131 – volume: 10 start-page: 300 year: 2019 ident: 10.1016/j.eja.2023.126744_bib48 article-title: Differential mechanisms of potato yield loss induced by high day and night temperatures during tuber initiation and bulking: photosynthesis and tuber growth publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00300 – volume: 110 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.eja.2023.126744_bib61 article-title: Strengths and limitations of nitrogen rate recommendations for corn and opportunities for improvement publication-title: Agron. J. doi: 10.2134/agronj2017.02.0112 – ident: 10.1016/j.eja.2023.126744_bib84 – volume: 128 year: 2021 ident: 10.1016/j.eja.2023.126744_bib88 article-title: Uncertainty analysis of critical nitrogen dilution curves for wheat publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2021.126315 – volume: 91 start-page: 281 issue: 3 year: 1986 ident: 10.1016/j.eja.2023.126744_bib37 article-title: Quantitative relationships for the dependence of growth rate of arable crops on their nitrogen content, dry weight and aerial environment publication-title: Plant Soil doi: 10.1007/BF02198111 – volume: 61 start-page: 878 year: 2021 ident: 10.1016/j.eja.2023.126744_bib46 article-title: Nitrogen uptake and utilization in advanced fresh-market red potato breeding lines publication-title: Crop Sci. doi: 10.1002/csc2.20297 – ident: 10.1016/j.eja.2023.126744_bib65 – start-page: 161 year: 2015 ident: 10.1016/j.eja.2023.126744_bib33 article-title: Quantifying Crop Responses to Nitrogen and Avenues to Improve Nitrogen-Use Efficiency – ident: 10.1016/j.eja.2023.126744_bib69 – volume: 164 start-page: 54 year: 2014 ident: 10.1016/j.eja.2023.126744_bib70 article-title: Quantifying crop nitrogen status for comparisons of agronomic practices and genotypes publication-title: Field Crops Res. doi: 10.1016/j.fcr.2014.05.006 – volume: 80 issue: 1 year: 2017 ident: 10.1016/j.eja.2023.126744_bib17 article-title: brms: an R package for bayesian multilevel models using stan publication-title: J. Stat. Softw. doi: 10.18637/jss.v080.i01 – ident: 10.1016/j.eja.2023.126744_bib2 – ident: 10.1016/j.eja.2023.126744_bib6 – volume: 66 start-page: 425 issue: 4 year: 1990 ident: 10.1016/j.eja.2023.126744_bib38 article-title: Decline in percentage N of C3 and C4 crops with increasing plant mass publication-title: Ann. Bot. doi: 10.1093/oxfordjournals.aob.a088044 – volume: 78 start-page: 109 issue: 2 year: 2001 ident: 10.1016/j.eja.2023.126744_bib10 article-title: Tuber growth and biomass partitioning of two potato cultivars grown under different N fertilization rates with and without irrigation publication-title: Am. J. Potato Res. doi: 10.1007/BF02874766 – ident: 10.1016/j.eja.2023.126744_bib75 doi: 10.1007/978-3-030-39157-7_3 – volume: 76 issue: 1 year: 2017 ident: 10.1016/j.eja.2023.126744_bib19 article-title: Stan: a probabilistic programming language publication-title: J. Stat. Softw. doi: 10.18637/jss.v076.i01 – ident: 10.1016/j.eja.2023.126744_bib72 – start-page: 119 year: 2020 ident: 10.1016/j.eja.2023.126744_bib36 article-title: Shoot- and tuber-based critical nitrogen dilution curves for the prediction of the N status in potato publication-title: Eur. J. Agron. – volume: 9 issue: 10 year: 2020 ident: 10.1016/j.eja.2023.126744_bib50 article-title: Crop mass and N status as prerequisite covariables for unraveling nitrogen use efficiency across genotype-by-environment-by-management scenarios: a review publication-title: Plants doi: 10.3390/plants9101309 – volume: 107 start-page: 1295 issue: 4 year: 2015 ident: 10.1016/j.eja.2023.126744_bib60 article-title: In-season nitrogen status assessment and yield estimation using hyperspectral vegetation indices in a potato crop publication-title: Agron. J. doi: 10.2134/agronj14.0402 – start-page: 75 year: 1998 ident: 10.1016/j.eja.2023.126744_bib42 article-title: Determination of total nitrogen in plant tissue – volume: 74 start-page: 397 issue: 4 year: 1994 ident: 10.1016/j.eja.2023.126744_bib47 article-title: Determination of a critical nitrogen dilution curve for winter wheat crops publication-title: Ann. Bot. doi: 10.1006/anbo.1994.1133 – volume: 27 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.eja.2023.126744_bib44 article-title: Elaboration of a nitrogen nutrition indicator for winter wheat based on leaf area index and chlorophyll content for making nitrogen recommendations publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2006.10.001 – ident: 10.1016/j.eja.2023.126744_bib87 – volume: 94 start-page: 583 issue: 3 year: 1980 ident: 10.1016/j.eja.2023.126744_bib1 article-title: An analysis of growth of the potato crop publication-title: J. Agr. Sci. doi: 10.1017/S0021859600028598 – ident: 10.1016/j.eja.2023.126744_bib66 – year: 1970 ident: 10.1016/j.eja.2023.126744_bib43 |
SSID | ssj0008254 |
Score | 2.364942 |
Snippet | Multiple critical N dilution curves [CNDCs] have been previously developed for potato; however, attempts to directly compare differences in CNDCs across... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 126744 |
SubjectTerms | agronomy Bayesian Bayesian theory class Critical N concentration Critical nitrogen dilution curve data collection genotype Genotype-by-environment-by-management interactions nitrogen content Nitrogen nutrition index Nitrogen use efficiency nutrient use efficiency nutrition Potato potatoes uncertainty |
Title | Quantifying critical N dilution curves across G × E × M effects for potato using a partially-pooled Bayesian hierarchical method |
URI | https://dx.doi.org/10.1016/j.eja.2023.126744 https://www.proquest.com/docview/3242053677 |
Volume | 144 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3wuI3gS6nbbNNkeV1ldlV0QFLyFJE1kZdld9iF48eR_8Opv0T9mpk0VBffgsaVpysxk5kvzzQwhh0xFdc0sC5RiNqA2toFM6zJQDg1ThUE8xmzkdoe1bunlXXI3R07LXBikVXrfX_j03Fv7O1Uvzeqw2626dciwR5Z7Xf47BctuU8rRyo-fv2keuAPKG6wwpA6FtfJkM-d4mQcsPRTFx244p_Sv2PTLS-eh52yFLHvMCI3is1bJnOmvkaXG_cjXzTDr5OV6KpH2g0lLoH37AuhA1i0sC_R09GjGIPOZ4Rw-XqH5_vbx-v7WBs_pAIdfYThw6HMASIe_BwlDlIXs9Z4C7MVlMjiRTwbzLgF7aOenEDhR0Yd6g9yeNW9OW4FvsBDoiCaTIGOxdAgwc9NoqVUodc2ETGVJbBNmLcIVpEFxbq1MeS1RpiYzpt0eMOVZ6rbhm2S-P-ibLQKhTmjMtVQ0Symnqs6NE6hmkQ6VSiK-TcJStEL76uPYBKMnSprZg3DaEKgNUWhjmxx9DRkWpTdmPUxLfYkf9iNcaJg17KDUrXDrCg9LZN8MpmOBQNM5KMb5zv9evUsW8argq-2R-cloavYdgJmoSm6hFbLQuLhqdT4Bh73zbg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFH6CcoAdENtAMBh7k3aaFJomjt0cOwQrg1aaBBI3y3bsqqhqq9Iicec_cOW3wB_DL3GQmASHXZPYjt5znj_H33sfwA-uk7bhjkdacxcxl7pI5W0VaY-GmaZFPKVs5F6fdy_Yn8vscgkO61wYolWG2F_F9DJahyvNYM3mdDhs-u-Qk0aW7678ncKXYYWqU2UNWOmcnHb7LwGZNkGlxgon9lDcqg83S5qXvaLqQ0l64HsQjL21PP0TqMvV53gD1gNsxE71Zh9hyY4_wYfOYBZKZ9jPcPd3oYj5Q3lLaIKCAfaxGFaTC81idmOvUZUj4298usejx4en-8eHHgZaB3oIi9OJB6ATJEb8ABVOyRxqNLqNSI7LFvhL3VpKvUSS0S4PImigSop6Ey6Oj84Pu1HQWIhMwrJ5VPBUeRBY-GGMMjpWpmVjrossdRl3jhALMaGEcE7lopVp21IFN34bmIsi9zvxLWiMJ2O7DRibjKXCKM2KnAmm28J6gxqemFjrLBE7ENemlSYUICcdjJGsmWZX0ntDkjdk5Y0d-PnSZFpV33jvYVb7S76aQtKvDu81-177VvpPi85L1NhOFteSsKaPUVyIL__X9TdY7Z73zuTZSf90F9boTkVf24PGfLawXz2emev9MF-fAdfR9h8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+critical+N+dilution+curves+across+G+%C3%97+E%C2%A0%C3%97%C2%A0M+effects+for+potato+using+a+partially-pooled+Bayesian+hierarchical+method&rft.jtitle=European+journal+of+agronomy&rft.au=Bohman%2C+Brian+J.&rft.au=Culshaw-Maurer%2C+Michael+J.&rft.au=Ben+Abdallah%2C+Feriel&rft.au=Giletto%2C+Claudia&rft.date=2023-03-01&rft.issn=1161-0301&rft.volume=144&rft.spage=126744&rft_id=info:doi/10.1016%2Fj.eja.2023.126744&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eja_2023_126744 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1161-0301&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1161-0301&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1161-0301&client=summon |