Quantifying critical N dilution curves across G × E × M effects for potato using a partially-pooled Bayesian hierarchical method

Multiple critical N dilution curves [CNDCs] have been previously developed for potato; however, attempts to directly compare differences in CNDCs across genotype [G], environment [E], and management [M] interactions have been confounded by non-uniform statistical methods, biased experimental data, a...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of agronomy Vol. 144; p. 126744
Main Authors Bohman, Brian J., Culshaw-Maurer, Michael J., Ben Abdallah, Feriel, Giletto, Claudia, Bélanger, Gilles, Fernández, Fabián G., Miao, Yuxin, Mulla, David J., Rosen, Carl J.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Multiple critical N dilution curves [CNDCs] have been previously developed for potato; however, attempts to directly compare differences in CNDCs across genotype [G], environment [E], and management [M] interactions have been confounded by non-uniform statistical methods, biased experimental data, and lack of proper quantification of uncertainty in the critical N concentration [%Nc]. This study implements a partially-pooled Bayesian hierarchical method to develop CNDCs for previously published and newly reported experimental data, systematically evaluates the difference in %Nc [∆%Nc] across G × E × M effects, and directly compare CNDCs from the Bayesian framework to CNDCs from conventional statistical methods. The partially-pooled Bayesian hierarchical method implemented in this study has the advantage of being less susceptible to inferential bias at the level of individual G × E × M interactions compared to alternative statistical methods that result from insufficient quantity and quality of experimental datasets (e.g., unbalanced distribution of N limiting and non-N limiting observations). This method also allows for a direct statistical comparison of differences in %Nc across levels of the G × E × M interactions. Where found to be significant, ∆%Nc was hypothesized to be related to variation in the timing of tuber initiation (e.g., maturity class) and the relative rate of tuber bulking (e.g., planting density) across G x E × M interactions. In addition to using the median value for %Nc (i.e., CNDC), the lower and upper boundary values for the credible region (i.e., CNDClo and CNDCup) derived using the Bayesian framework should be used in calculation of N nutrition index (and other calculations) to account for uncertainty in %Nc. Overall, this study provides additional evidence that%Nc is dependent upon G × E × M interactions; therefore, evaluation of crop N status or N use efficiency must account for variation in %Nc across G × E × M interactions. •Critical N dilution curves [CNDCs] for potato are subject to G x E x M effects.•Bayesian methods can quantify uncertainty in critical N concentration [%Nc].•Partial pooling Bayesian method enables direct comparison of G x E x M effects.•Variation in %Nc for potato due to tuber initiation timing and tuber bulking rate.•N use efficiency and N nutrition index depend on %Nc variability and uncertainty.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1161-0301
1873-7331
DOI:10.1016/j.eja.2023.126744