Molecular basis of RNA recombination in the 3′UTR of chikungunya virus genome
Abstract Chikungunya virus (CHIKV) is a rapidly spreading re-emergent virus transmitted from mosquitoes to humans. The emergence of epidemic variants has been associated with changes in the viral genome, such as the duplication of repeated sequences in the 3′ untranslated region (UTR). Indeed, block...
Saved in:
Published in | Nucleic acids research Vol. 52; no. 16; pp. 9727 - 9744 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
25.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract
Chikungunya virus (CHIKV) is a rapidly spreading re-emergent virus transmitted from mosquitoes to humans. The emergence of epidemic variants has been associated with changes in the viral genome, such as the duplication of repeated sequences in the 3′ untranslated region (UTR). Indeed, blocks of repeated sequences seemingly favor RNA recombination, providing the virus with a unique ability to continuously change the 3′UTR architecture during host switching. In this work, we provide experimental data on the molecular mechanism of RNA recombination and describe specific sequence and structural elements in the viral 3′UTR that favor template switching of the viral RNA-dependent RNA polymerase on the 3′UTR. Furthermore, we found that a 3′UTR deletion mutant that exhibits markedly delayed replication in mosquito cells and impaired transmission in vivo, recombines in reference laboratory strains of mosquitoes. Altogether, our data provide novel experimental evidence indicating that RNA recombination can act as a nucleic acid repair mechanism to add repeated sequences that are associated to high viral fitness in mosquito during chikungunya virus replication.
Graphical Abstract
Graphical Abstract |
---|---|
Bibliography: | The first two authors should be regarded as Joint First Authors. |
ISSN: | 0305-1048 1362-4962 |
DOI: | 10.1093/nar/gkae650 |