Modulating the Cathode by Back-Gate for Planar Nanoscale Vacuum/Air Channel Electron Tube

Nanoscale vacuum/air channel electron tubes (VETs) keep emerging owing to their superior performance in high-temperature and high-frequency working environments. However, in VETs the edge field of the gate with inferior modulation efficiency, nonnegligible leakage or accumulation, and poor compatibi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electron devices Vol. 71; no. 11; pp. 7082 - 7086
Main Authors Wang, Yuelin, Ying, Wenjing, Li, Tie, Fang, Zebo, Ye, Qiufeng
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9383
1557-9646
DOI10.1109/TED.2024.3462678

Cover

Loading…
Abstract Nanoscale vacuum/air channel electron tubes (VETs) keep emerging owing to their superior performance in high-temperature and high-frequency working environments. However, in VETs the edge field of the gate with inferior modulation efficiency, nonnegligible leakage or accumulation, and poor compatibility with integrated circuits (ICs) technology limits the realization of VET IC. In this work, an original cathode-modulated VET (CMVET) is proposed, which can efficiently control the field emission current of the cathode by directly regulating the electron density of the cathode by back-gate, resulting in regulating the anode current. As a result, we obtain a transconductance of <inline-formula> <tex-math notation="LaTeX">4.6 \; \mu </tex-math></inline-formula>S and a suppressed gate leakage current of no more than <inline-formula> <tex-math notation="LaTeX">10^{-{11}} </tex-math></inline-formula> A for the CMVET device, which is completely fabricated by traditional microelectronic process, being compatible with IC processes. On the basis of this strategy, it is promising to realize the CMVET IC with great resistance to high frequency, high temperature, and high radiation.
AbstractList Nanoscale vacuum/air channel electron tubes (VETs) keep emerging owing to their superior performance in high-temperature and high-frequency working environments. However, in VETs the edge field of the gate with inferior modulation efficiency, nonnegligible leakage or accumulation, and poor compatibility with integrated circuits (ICs) technology limits the realization of VET IC. In this work, an original cathode-modulated VET (CMVET) is proposed, which can efficiently control the field emission current of the cathode by directly regulating the electron density of the cathode by back-gate, resulting in regulating the anode current. As a result, we obtain a transconductance of [Formula Omitted]S and a suppressed gate leakage current of no more than [Formula Omitted] A for the CMVET device, which is completely fabricated by traditional microelectronic process, being compatible with IC processes. On the basis of this strategy, it is promising to realize the CMVET IC with great resistance to high frequency, high temperature, and high radiation.
Nanoscale vacuum/air channel electron tubes (VETs) keep emerging owing to their superior performance in high-temperature and high-frequency working environments. However, in VETs the edge field of the gate with inferior modulation efficiency, nonnegligible leakage or accumulation, and poor compatibility with integrated circuits (ICs) technology limits the realization of VET IC. In this work, an original cathode-modulated VET (CMVET) is proposed, which can efficiently control the field emission current of the cathode by directly regulating the electron density of the cathode by back-gate, resulting in regulating the anode current. As a result, we obtain a transconductance of <inline-formula> <tex-math notation="LaTeX">4.6 \; \mu </tex-math></inline-formula>S and a suppressed gate leakage current of no more than <inline-formula> <tex-math notation="LaTeX">10^{-{11}} </tex-math></inline-formula> A for the CMVET device, which is completely fabricated by traditional microelectronic process, being compatible with IC processes. On the basis of this strategy, it is promising to realize the CMVET IC with great resistance to high frequency, high temperature, and high radiation.
Author Ying, Wenjing
Fang, Zebo
Li, Tie
Wang, Yuelin
Ye, Qiufeng
Author_xml – sequence: 1
  givenname: Yuelin
  surname: Wang
  fullname: Wang, Yuelin
  email: ylwang@mail.sim.ac.cn
  organization: Department of Physics, Zhejiang Engineering Research Center of MEMS, Shaoxing University, Shaoxing, China
– sequence: 2
  givenname: Wenjing
  surname: Ying
  fullname: Ying, Wenjing
  organization: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
– sequence: 3
  givenname: Tie
  orcidid: 0000-0001-9907-0188
  surname: Li
  fullname: Li, Tie
  organization: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
– sequence: 4
  givenname: Zebo
  surname: Fang
  fullname: Fang, Zebo
  organization: Department of Physics, Zhejiang Engineering Research Center of MEMS, Shaoxing University, Shaoxing, China
– sequence: 5
  givenname: Qiufeng
  orcidid: 0000-0003-2200-2739
  surname: Ye
  fullname: Ye, Qiufeng
  organization: Department of Physics, Zhejiang Engineering Research Center of MEMS, Shaoxing University, Shaoxing, China
BookMark eNpNkD1PwzAQhi1UJNrCzsBgiTmtv5I4YwmlIJWPIUJiii7OhaakdnGSof-eVO3AdDrped87PRMyss4iIbeczThnyTxbPs4EE2omVSSiWF-QMQ_DOEgiFY3ImDGug0RqeUUmbbsd1kgpMSZfr67sG-hq-027DdIUuo0rkRYH-gDmJ1hBh7Rynn40YMHTN7CuNdAg_QTT97v5ovY03YC12NBlg6bzztKsL_CaXFbQtHhznlOSPS2z9DlYv69e0sU6MEKFXWBQaVkhK-NChcPvnGGsuEEtCwGC8YQD0wJYEYWV0EaVCrSOuIhBxWEl5ZTcn2r33v322Hb51vXeDhdzyQWLlOaJHih2oox3beuxyve-3oE_5JzlR3_54C8_-svP_obI3SlSI-I_PGaCay3_AJzHa8Y
CODEN IETDAI
Cites_doi 10.1021/acs.nanolett.0c03959
10.1109/TED.2020.3019765
10.3390/mi14020346
10.1116/1.4979049
10.3390/mi14020488
10.1021/acs.nanolett.8b02849
10.1039/D1NA00004G
10.1109/MARSS.2019.8860991
10.3390/electronics12040802
10.1039/D0NR08997D
10.1109/LED.2021.3136875
10.1039/D1NR02773E
10.1063/1.4989677
10.1109/TNANO.2014.2310774
10.1021/acs.nanolett.6b04363
10.1186/s11671-018-2736-6
10.1088/1361-6463/ab642f
10.1109/TED.2019.2928545
10.1016/j.sse.2017.03.002
10.1063/1.4717751
10.1088/1361-6528/ab51cb
10.1039/c8nr09068h
10.1109/NANO46743.2019.8993909
10.1063/1.4996370
10.1038/nnano.2012.107
10.1109/TED.2020.3006167
10.1049/mnl.2017.0411
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TED.2024.3462678
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9646
EndPage 7086
ExternalDocumentID 10_1109_TED_2024_3462678
10702188
Genre orig-research
GrantInformation_xml – fundername: Smart Sensor Innovation Team Program of Shaoxing University
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
VOH
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c245t-ce483fe0d7b4534610e741ce83b2a20191a082a0b65f28c4d4a886127a475f33
IEDL.DBID RIE
ISSN 0018-9383
IngestDate Mon Jun 30 10:18:15 EDT 2025
Tue Jul 01 03:05:49 EDT 2025
Wed Aug 27 02:14:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-ce483fe0d7b4534610e741ce83b2a20191a082a0b65f28c4d4a886127a475f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9907-0188
0000-0003-2200-2739
PQID 3120648198
PQPubID 85466
PageCount 5
ParticipantIDs ieee_primary_10702188
proquest_journals_3120648198
crossref_primary_10_1109_TED_2024_3462678
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on electron devices
PublicationTitleAbbrev TED
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref18
  doi: 10.1021/acs.nanolett.0c03959
– ident: ref11
  doi: 10.1109/TED.2020.3019765
– ident: ref13
  doi: 10.3390/mi14020346
– ident: ref20
  doi: 10.1116/1.4979049
– ident: ref26
  doi: 10.3390/mi14020488
– ident: ref4
  doi: 10.1021/acs.nanolett.8b02849
– ident: ref16
  doi: 10.1039/D1NA00004G
– ident: ref24
  doi: 10.1109/MARSS.2019.8860991
– ident: ref27
  doi: 10.3390/electronics12040802
– ident: ref25
  doi: 10.1039/D0NR08997D
– ident: ref17
  doi: 10.1109/LED.2021.3136875
– ident: ref7
  doi: 10.1039/D1NR02773E
– ident: ref9
  doi: 10.1063/1.4989677
– ident: ref23
  doi: 10.1109/TNANO.2014.2310774
– ident: ref8
  doi: 10.1021/acs.nanolett.6b04363
– ident: ref5
  doi: 10.1186/s11671-018-2736-6
– ident: ref14
  doi: 10.1088/1361-6463/ab642f
– ident: ref10
  doi: 10.1109/TED.2019.2928545
– ident: ref3
  doi: 10.1016/j.sse.2017.03.002
– ident: ref2
  doi: 10.1063/1.4717751
– ident: ref15
  doi: 10.1088/1361-6528/ab51cb
– ident: ref6
  doi: 10.1039/c8nr09068h
– ident: ref19
  doi: 10.1109/NANO46743.2019.8993909
– ident: ref22
  doi: 10.1063/1.4996370
– ident: ref1
  doi: 10.1038/nnano.2012.107
– ident: ref12
  doi: 10.1109/TED.2020.3006167
– ident: ref21
  doi: 10.1049/mnl.2017.0411
SSID ssj0016442
Score 2.457641
Snippet Nanoscale vacuum/air channel electron tubes (VETs) keep emerging owing to their superior performance in high-temperature and high-frequency working...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 7082
SubjectTerms Anodes
Cathode modulated
Cathodes
Current leakage
Electron density
Electron tubes
Electrons
Etching
Field emission
High temperature
Integrated circuits
Leakage current
Logic gates
Nanoscale devices
planar electron tube
Radiation tolerance
Silicon
Transconductance
Vacuum tubes
Voltage control
Voltage measurement
Working conditions
Title Modulating the Cathode by Back-Gate for Planar Nanoscale Vacuum/Air Channel Electron Tube
URI https://ieeexplore.ieee.org/document/10702188
https://www.proquest.com/docview/3120648198
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxh4FlEoyAMLQ9rUdhJnLKhVhdROBZUpcuwLQoUEtckAv55zHqgCIbElUmJZPt_ddz5_d4Rco9MTyniBk2BA7QhmhIOvxmF-4IKbaK5cSxSezf3pg7hfesuarF5yYQCgvHwGfftY5vJNpgt7VIYaHliXJFukhZFbRdb6ThmgY69Kgw9RgzHuanKSbjhAG4CRIBN9LhC_245qWz6obKryyxKX7mVyQObNxKpbJat-kcd9_fmjZuO_Z35I9mugSUfVzjgiO5Aek72t8oMn5GmWmbJ7V_pMEQdSywbMDND4g94qvXLsyRpFUEttZyO1pmiJsw3KFOij0kXxNhi9rKmlJ6TwSsd1Px26KGLokMVkvLibOnWrBUcz4eWOBiF5Aq4JYuFxW4MdEGpokDxmCjFCOFSIFZQb-17CpBZGKCkRHAVKBF7C-Slpp1kKZ4Ry4YE0PhpZHBOdv5JcKd81WrLQSGW65KZZ--i9KqgRlYGIG0Yop8jKKarl1CUdu5Rb31Wr2CW9RlpRrXKbiA8ZwisEOPL8j98uyK4dvWIS9kg7XxdwiZAij6_KrfQFIc7F1w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBN6JQwAMLQ0oaO4k7FkRVHu1UUJkix74gVEhQ2wzw6zknKapASGyJlIfls-_7zvZ3B3BGoCeU8UMnoYDaEZ4RDt0axwtCF91Ec-VaoXB_EPQexO3IH1Vi9UILg4jF4TNs2stiL99kOrdLZTTDQwtJchlWCPj9VinX-t40IGgvk4O3aA5T5DXflXTbF-QFKBb0RJMLYvC2ptoCChVlVX754gJgupswmDetPFcybuazuKk_f2Rt_Hfbt2CjopqsU46NbVjCdAfWFxIQ7sJTPzNF_a70mRETZFYPmBlk8Qe7VHrs2LU1RrSW2dpGasLIF2dTsiqyR6Xz_O2i8zJhVqCQ4iu7rirqsGEe4x4Mu9fDq55TFVtwtCf8maNRSJ6ga8JY-NxmYUciGxoljz1FLKHdUsQWlBsHfuJJLYxQUhI9CpUI_YTzfailWYoHwLjwUZqA3Cx9k-BfSa5U4BotvbaRytThfN730XuZUiMqQhG3HZGdImunqLJTHfZsVy48V_ZiHRpza0XVpJtGvOURwSKKIw__eO0UVnvD_n10fzO4O4I1-6dSV9iA2myS4zERjFl8UgyrL6QXySA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulating+the+Cathode+by+Back-Gate+for+Planar+Nanoscale+Vacuum%2FAir+Channel+Electron+Tube&rft.jtitle=IEEE+transactions+on+electron+devices&rft.au=Wang%2C+Yuelin&rft.au=Ying%2C+Wenjing&rft.au=Li%2C+Tie&rft.au=Fang%2C+Zebo&rft.date=2024-11-01&rft.issn=0018-9383&rft.eissn=1557-9646&rft.volume=71&rft.issue=11&rft.spage=7082&rft.epage=7086&rft_id=info:doi/10.1109%2FTED.2024.3462678&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TED_2024_3462678
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9383&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9383&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9383&client=summon