Modulating the Cathode by Back-Gate for Planar Nanoscale Vacuum/Air Channel Electron Tube
Nanoscale vacuum/air channel electron tubes (VETs) keep emerging owing to their superior performance in high-temperature and high-frequency working environments. However, in VETs the edge field of the gate with inferior modulation efficiency, nonnegligible leakage or accumulation, and poor compatibi...
Saved in:
Published in | IEEE transactions on electron devices Vol. 71; no. 11; pp. 7082 - 7086 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9383 1557-9646 |
DOI | 10.1109/TED.2024.3462678 |
Cover
Loading…
Abstract | Nanoscale vacuum/air channel electron tubes (VETs) keep emerging owing to their superior performance in high-temperature and high-frequency working environments. However, in VETs the edge field of the gate with inferior modulation efficiency, nonnegligible leakage or accumulation, and poor compatibility with integrated circuits (ICs) technology limits the realization of VET IC. In this work, an original cathode-modulated VET (CMVET) is proposed, which can efficiently control the field emission current of the cathode by directly regulating the electron density of the cathode by back-gate, resulting in regulating the anode current. As a result, we obtain a transconductance of <inline-formula> <tex-math notation="LaTeX">4.6 \; \mu </tex-math></inline-formula>S and a suppressed gate leakage current of no more than <inline-formula> <tex-math notation="LaTeX">10^{-{11}} </tex-math></inline-formula> A for the CMVET device, which is completely fabricated by traditional microelectronic process, being compatible with IC processes. On the basis of this strategy, it is promising to realize the CMVET IC with great resistance to high frequency, high temperature, and high radiation. |
---|---|
AbstractList | Nanoscale vacuum/air channel electron tubes (VETs) keep emerging owing to their superior performance in high-temperature and high-frequency working environments. However, in VETs the edge field of the gate with inferior modulation efficiency, nonnegligible leakage or accumulation, and poor compatibility with integrated circuits (ICs) technology limits the realization of VET IC. In this work, an original cathode-modulated VET (CMVET) is proposed, which can efficiently control the field emission current of the cathode by directly regulating the electron density of the cathode by back-gate, resulting in regulating the anode current. As a result, we obtain a transconductance of [Formula Omitted]S and a suppressed gate leakage current of no more than [Formula Omitted] A for the CMVET device, which is completely fabricated by traditional microelectronic process, being compatible with IC processes. On the basis of this strategy, it is promising to realize the CMVET IC with great resistance to high frequency, high temperature, and high radiation. Nanoscale vacuum/air channel electron tubes (VETs) keep emerging owing to their superior performance in high-temperature and high-frequency working environments. However, in VETs the edge field of the gate with inferior modulation efficiency, nonnegligible leakage or accumulation, and poor compatibility with integrated circuits (ICs) technology limits the realization of VET IC. In this work, an original cathode-modulated VET (CMVET) is proposed, which can efficiently control the field emission current of the cathode by directly regulating the electron density of the cathode by back-gate, resulting in regulating the anode current. As a result, we obtain a transconductance of <inline-formula> <tex-math notation="LaTeX">4.6 \; \mu </tex-math></inline-formula>S and a suppressed gate leakage current of no more than <inline-formula> <tex-math notation="LaTeX">10^{-{11}} </tex-math></inline-formula> A for the CMVET device, which is completely fabricated by traditional microelectronic process, being compatible with IC processes. On the basis of this strategy, it is promising to realize the CMVET IC with great resistance to high frequency, high temperature, and high radiation. |
Author | Ying, Wenjing Fang, Zebo Li, Tie Wang, Yuelin Ye, Qiufeng |
Author_xml | – sequence: 1 givenname: Yuelin surname: Wang fullname: Wang, Yuelin email: ylwang@mail.sim.ac.cn organization: Department of Physics, Zhejiang Engineering Research Center of MEMS, Shaoxing University, Shaoxing, China – sequence: 2 givenname: Wenjing surname: Ying fullname: Ying, Wenjing organization: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China – sequence: 3 givenname: Tie orcidid: 0000-0001-9907-0188 surname: Li fullname: Li, Tie organization: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China – sequence: 4 givenname: Zebo surname: Fang fullname: Fang, Zebo organization: Department of Physics, Zhejiang Engineering Research Center of MEMS, Shaoxing University, Shaoxing, China – sequence: 5 givenname: Qiufeng orcidid: 0000-0003-2200-2739 surname: Ye fullname: Ye, Qiufeng organization: Department of Physics, Zhejiang Engineering Research Center of MEMS, Shaoxing University, Shaoxing, China |
BookMark | eNpNkD1PwzAQhi1UJNrCzsBgiTmtv5I4YwmlIJWPIUJiii7OhaakdnGSof-eVO3AdDrped87PRMyss4iIbeczThnyTxbPs4EE2omVSSiWF-QMQ_DOEgiFY3ImDGug0RqeUUmbbsd1kgpMSZfr67sG-hq-027DdIUuo0rkRYH-gDmJ1hBh7Rynn40YMHTN7CuNdAg_QTT97v5ovY03YC12NBlg6bzztKsL_CaXFbQtHhznlOSPS2z9DlYv69e0sU6MEKFXWBQaVkhK-NChcPvnGGsuEEtCwGC8YQD0wJYEYWV0EaVCrSOuIhBxWEl5ZTcn2r33v322Hb51vXeDhdzyQWLlOaJHih2oox3beuxyve-3oE_5JzlR3_54C8_-svP_obI3SlSI-I_PGaCay3_AJzHa8Y |
CODEN | IETDAI |
Cites_doi | 10.1021/acs.nanolett.0c03959 10.1109/TED.2020.3019765 10.3390/mi14020346 10.1116/1.4979049 10.3390/mi14020488 10.1021/acs.nanolett.8b02849 10.1039/D1NA00004G 10.1109/MARSS.2019.8860991 10.3390/electronics12040802 10.1039/D0NR08997D 10.1109/LED.2021.3136875 10.1039/D1NR02773E 10.1063/1.4989677 10.1109/TNANO.2014.2310774 10.1021/acs.nanolett.6b04363 10.1186/s11671-018-2736-6 10.1088/1361-6463/ab642f 10.1109/TED.2019.2928545 10.1016/j.sse.2017.03.002 10.1063/1.4717751 10.1088/1361-6528/ab51cb 10.1039/c8nr09068h 10.1109/NANO46743.2019.8993909 10.1063/1.4996370 10.1038/nnano.2012.107 10.1109/TED.2020.3006167 10.1049/mnl.2017.0411 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TED.2024.3462678 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9646 |
EndPage | 7086 |
ExternalDocumentID | 10_1109_TED_2024_3462678 10702188 |
Genre | orig-research |
GrantInformation_xml | – fundername: Smart Sensor Innovation Team Program of Shaoxing University |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK VOH AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c245t-ce483fe0d7b4534610e741ce83b2a20191a082a0b65f28c4d4a886127a475f33 |
IEDL.DBID | RIE |
ISSN | 0018-9383 |
IngestDate | Mon Jun 30 10:18:15 EDT 2025 Tue Jul 01 03:05:49 EDT 2025 Wed Aug 27 02:14:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c245t-ce483fe0d7b4534610e741ce83b2a20191a082a0b65f28c4d4a886127a475f33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9907-0188 0000-0003-2200-2739 |
PQID | 3120648198 |
PQPubID | 85466 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10702188 proquest_journals_3120648198 crossref_primary_10_1109_TED_2024_3462678 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on electron devices |
PublicationTitleAbbrev | TED |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref18 doi: 10.1021/acs.nanolett.0c03959 – ident: ref11 doi: 10.1109/TED.2020.3019765 – ident: ref13 doi: 10.3390/mi14020346 – ident: ref20 doi: 10.1116/1.4979049 – ident: ref26 doi: 10.3390/mi14020488 – ident: ref4 doi: 10.1021/acs.nanolett.8b02849 – ident: ref16 doi: 10.1039/D1NA00004G – ident: ref24 doi: 10.1109/MARSS.2019.8860991 – ident: ref27 doi: 10.3390/electronics12040802 – ident: ref25 doi: 10.1039/D0NR08997D – ident: ref17 doi: 10.1109/LED.2021.3136875 – ident: ref7 doi: 10.1039/D1NR02773E – ident: ref9 doi: 10.1063/1.4989677 – ident: ref23 doi: 10.1109/TNANO.2014.2310774 – ident: ref8 doi: 10.1021/acs.nanolett.6b04363 – ident: ref5 doi: 10.1186/s11671-018-2736-6 – ident: ref14 doi: 10.1088/1361-6463/ab642f – ident: ref10 doi: 10.1109/TED.2019.2928545 – ident: ref3 doi: 10.1016/j.sse.2017.03.002 – ident: ref2 doi: 10.1063/1.4717751 – ident: ref15 doi: 10.1088/1361-6528/ab51cb – ident: ref6 doi: 10.1039/c8nr09068h – ident: ref19 doi: 10.1109/NANO46743.2019.8993909 – ident: ref22 doi: 10.1063/1.4996370 – ident: ref1 doi: 10.1038/nnano.2012.107 – ident: ref12 doi: 10.1109/TED.2020.3006167 – ident: ref21 doi: 10.1049/mnl.2017.0411 |
SSID | ssj0016442 |
Score | 2.457641 |
Snippet | Nanoscale vacuum/air channel electron tubes (VETs) keep emerging owing to their superior performance in high-temperature and high-frequency working... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 7082 |
SubjectTerms | Anodes Cathode modulated Cathodes Current leakage Electron density Electron tubes Electrons Etching Field emission High temperature Integrated circuits Leakage current Logic gates Nanoscale devices planar electron tube Radiation tolerance Silicon Transconductance Vacuum tubes Voltage control Voltage measurement Working conditions |
Title | Modulating the Cathode by Back-Gate for Planar Nanoscale Vacuum/Air Channel Electron Tube |
URI | https://ieeexplore.ieee.org/document/10702188 https://www.proquest.com/docview/3120648198 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxh4FlEoyAMLQ9rUdhJnLKhVhdROBZUpcuwLQoUEtckAv55zHqgCIbElUmJZPt_ddz5_d4Rco9MTyniBk2BA7QhmhIOvxmF-4IKbaK5cSxSezf3pg7hfesuarF5yYQCgvHwGfftY5vJNpgt7VIYaHliXJFukhZFbRdb6ThmgY69Kgw9RgzHuanKSbjhAG4CRIBN9LhC_245qWz6obKryyxKX7mVyQObNxKpbJat-kcd9_fmjZuO_Z35I9mugSUfVzjgiO5Aek72t8oMn5GmWmbJ7V_pMEQdSywbMDND4g94qvXLsyRpFUEttZyO1pmiJsw3KFOij0kXxNhi9rKmlJ6TwSsd1Px26KGLokMVkvLibOnWrBUcz4eWOBiF5Aq4JYuFxW4MdEGpokDxmCjFCOFSIFZQb-17CpBZGKCkRHAVKBF7C-Slpp1kKZ4Ry4YE0PhpZHBOdv5JcKd81WrLQSGW65KZZ--i9KqgRlYGIG0Yop8jKKarl1CUdu5Rb31Wr2CW9RlpRrXKbiA8ZwisEOPL8j98uyK4dvWIS9kg7XxdwiZAij6_KrfQFIc7F1w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBN6JQwAMLQ0oaO4k7FkRVHu1UUJkix74gVEhQ2wzw6zknKapASGyJlIfls-_7zvZ3B3BGoCeU8UMnoYDaEZ4RDt0axwtCF91Ec-VaoXB_EPQexO3IH1Vi9UILg4jF4TNs2stiL99kOrdLZTTDQwtJchlWCPj9VinX-t40IGgvk4O3aA5T5DXflXTbF-QFKBb0RJMLYvC2ptoCChVlVX754gJgupswmDetPFcybuazuKk_f2Rt_Hfbt2CjopqsU46NbVjCdAfWFxIQ7sJTPzNF_a70mRETZFYPmBlk8Qe7VHrs2LU1RrSW2dpGasLIF2dTsiqyR6Xz_O2i8zJhVqCQ4iu7rirqsGEe4x4Mu9fDq55TFVtwtCf8maNRSJ6ga8JY-NxmYUciGxoljz1FLKHdUsQWlBsHfuJJLYxQUhI9CpUI_YTzfailWYoHwLjwUZqA3Cx9k-BfSa5U4BotvbaRytThfN730XuZUiMqQhG3HZGdImunqLJTHfZsVy48V_ZiHRpza0XVpJtGvOURwSKKIw__eO0UVnvD_n10fzO4O4I1-6dSV9iA2myS4zERjFl8UgyrL6QXySA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulating+the+Cathode+by+Back-Gate+for+Planar+Nanoscale+Vacuum%2FAir+Channel+Electron+Tube&rft.jtitle=IEEE+transactions+on+electron+devices&rft.au=Wang%2C+Yuelin&rft.au=Ying%2C+Wenjing&rft.au=Li%2C+Tie&rft.au=Fang%2C+Zebo&rft.date=2024-11-01&rft.issn=0018-9383&rft.eissn=1557-9646&rft.volume=71&rft.issue=11&rft.spage=7082&rft.epage=7086&rft_id=info:doi/10.1109%2FTED.2024.3462678&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TED_2024_3462678 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9383&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9383&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9383&client=summon |