Modulating the Cathode by Back-Gate for Planar Nanoscale Vacuum/Air Channel Electron Tube
Nanoscale vacuum/air channel electron tubes (VETs) keep emerging owing to their superior performance in high-temperature and high-frequency working environments. However, in VETs the edge field of the gate with inferior modulation efficiency, nonnegligible leakage or accumulation, and poor compatibi...
Saved in:
Published in | IEEE transactions on electron devices Vol. 71; no. 11; pp. 7082 - 7086 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Nanoscale vacuum/air channel electron tubes (VETs) keep emerging owing to their superior performance in high-temperature and high-frequency working environments. However, in VETs the edge field of the gate with inferior modulation efficiency, nonnegligible leakage or accumulation, and poor compatibility with integrated circuits (ICs) technology limits the realization of VET IC. In this work, an original cathode-modulated VET (CMVET) is proposed, which can efficiently control the field emission current of the cathode by directly regulating the electron density of the cathode by back-gate, resulting in regulating the anode current. As a result, we obtain a transconductance of <inline-formula> <tex-math notation="LaTeX">4.6 \; \mu </tex-math></inline-formula>S and a suppressed gate leakage current of no more than <inline-formula> <tex-math notation="LaTeX">10^{-{11}} </tex-math></inline-formula> A for the CMVET device, which is completely fabricated by traditional microelectronic process, being compatible with IC processes. On the basis of this strategy, it is promising to realize the CMVET IC with great resistance to high frequency, high temperature, and high radiation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2024.3462678 |