Novel glucomannan-like polysaccharide from Lycium barbarum L. ameliorates renal fibrosis via blocking macrophage-to-myofibroblasts transition
The macrophage to myofibroblasts transition (MMT) has been reported as a newly key target in renal fibrosis. Lycium barbarum L. is a traditional Chinese medicine for improving renal function, in which its polysaccharides (LBPs) are the mainly active components. However, whether the role of LBPs in t...
Saved in:
Published in | International journal of biological macromolecules Vol. 278; no. Pt 2; p. 134491 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The macrophage to myofibroblasts transition (MMT) has been reported as a newly key target in renal fibrosis. Lycium barbarum L. is a traditional Chinese medicine for improving renal function, in which its polysaccharides (LBPs) are the mainly active components. However, whether the role of LBPs in treating renal fibrosis is related to MMT process remain unclear. The purpose of this study was to explore the relationship between the regulating effect on MMT process and the anti-fibrotic effect of LBPs. Initially, small molecular weight LBPs fractions (LBP-S) were firstly isolated via Sephadex G-100 column. Then, the potent inhibitory effect of LBP-S on MMT process was revealed on bone marrow-derived macrophages (BMDM) model induced by TGF-β. Subsequently, the chemical structure of LBP-S was elucidated through monosaccharide, methylation and NMR spectrum analysis. In vivo biodistribution characteristics studies demonstrated that LBP-S exhibited effectively accumulation in kidney via intraperitoneal administration. Finally, LBP-S showed a satisfactory anti-renal fibrotic effect on unilateral ureteral obstruction operation (UUO) mice, which was significantly reduced following macrophage depletion. Overall, our findings indicated that LPB-S could alleviate renal fibrosis through regulating MMT process and providing new candidate agents for chronic kidney disease (CKD) related fibrosis treatment.
Diagram showing the extraction and isolation, structural characterization and MMT effectiveness of Lycium barbarum L. polysaccharides. [Display omitted] |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0141-8130 1879-0003 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.134491 |