Dynamic Quantized Tracking Control for Nonlinear Strict-Feedback Systems Under DoS Attacks and Exogenous Disturbances

This article studies the problem of quantized backstepping tracking control for nonlinear strict-feedback systems subject to denial-of-service (DoS) attacks, data rate constraints, and exogenous disturbances. Due to limited network resources, only finite bits of data can be transmitted per time unit...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial informatics Vol. 21; no. 6; pp. 4511 - 4521
Main Authors Zhao, Can, An, Liwei, Que, Jiaxiong, Wen, Xinluan, Ao, Yucai
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.06.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1551-3203
1941-0050
DOI10.1109/TII.2025.3541716

Cover

More Information
Summary:This article studies the problem of quantized backstepping tracking control for nonlinear strict-feedback systems subject to denial-of-service (DoS) attacks, data rate constraints, and exogenous disturbances. Due to limited network resources, only finite bits of data can be transmitted per time unit. A constant bit encoding-decoding scheme is first designed to guarantee limited data transmissions and be robust to DoS attacks and exogenous disturbances. To reduce the data rate, a variable bit encoding-decoding scheme is further designed that adaptively adjusts the data rate according to the actual frequency and duration of DoS attacks. High-order filters are designed to avoid repeatedly differentiating discontinuous state variables caused by discrete network behaviors in the design of backstepping controller. It is shown that all the closed-loop signals are globally uniformly bounded and the tracking error converges to a neighborhood of the origin. The effectiveness of the proposed scheme is illustrated by the experiment of the wheeled mobile robot.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1551-3203
1941-0050
DOI:10.1109/TII.2025.3541716