Robust peroxidase from Bacillus mojavensis TH309: Immobilization on walnut shell hydrochar and evaluation of its potential in dye decolorization

Peroxidases have received considerable attention as a cost-effective and environmentally friendly catalyst for bioremediation. Their rapid activity loss under harsh environmental conditions and inability to be used repetitively limit their exploitation in real-world wastewater treatment. First, a pe...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological macromolecules Vol. 277; no. Pt 4; p. 134525
Main Authors Adıgüzel, Ali Osman, Yabalak, Erdal, Cilmeli, Sümeyye, Durgun, Recep Tayyip, Kaya, Nisa Gül
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Peroxidases have received considerable attention as a cost-effective and environmentally friendly catalyst for bioremediation. Their rapid activity loss under harsh environmental conditions and inability to be used repetitively limit their exploitation in real-world wastewater treatment. First, a peroxidase was produced extracellularly by Bacillus mojavensis TH309 and purified 8.12-fold with a final yield of 47.10 % using Sephadex G-100 superfine resin. The pure peroxidase (BmPer) possessed a relatively low molecular weight of ∼21 kDa and was active against L-DOPA on acrylamide gel after electrophoresis. BmPer was immobilized by adsorption functionalized walnut shell hydrochar (WsH) with 61.99 ± 1.34 % efficiency and 37.07 ± 4.16 % activity loss. BmPer and its immobilized form (WsH-BmPer) exhibited maximum activity at 50 °C and pH 9. WsH-BmPer exhibited 3.23-, 2.37-, 1.65-, and 2.25-fold longer half-life than BmPer at 50, 60, 70, and 80 °C, respectively. Immobilization significantly enhanced the stability of the enzyme under acidic conditions. BmPer and WsH-BmPer showed maximal activity in the presence of 1 % salt and retained more than 85 % of their activity even after pre-incubation with 2.5 M salt for 60 min at 50 °C. Their catalytic efficiency was significantly stimulated by pre-incubation with Triton X-100 (1 mM), Tween20 (1 mM), and Mg2+ (1 and 10 mM). Immobilization strongly reduced the loss of activity caused by inhibitors including Ba2+, Hg2+, and Cu2+. Moreover, both forms of the enzyme were compatible with solvents. The Michaelis constant (Km) values of BmPer and WsH-BmPer were 0.88 and 2.66 mM for 2,4 DCP, respectively. WsH-BmPer peroxidase maintained about 82 % and 85 % of its activity when stored at 4 °C for 30 days and reused for up to 10 cycles, respectively. Furthermore, it decolorized Cibacron red (CR), Poly R-478 (PR), Remazol Brilliant Blue R (RBBR), and Methyl red (MR) dyes by 60.13 %, 91.34 %, 86.41 %, and 50.51 % within 60 min, respectively. [Display omitted] •An extracellular peroxidase was produced and purified by Bacillus mojavensis TH309.•The purified peroxidase was immobilized by adsorption functionalized walnut shell hydrochar.•Immobilization significantly enhanced the stability of the enzyme under acidic conditions.•The performance of peroxidase-immobilized hydrochar in decolorisation was evaluated.•The remarkable decolorization yields showed that the final product is promising for bioremediation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0141-8130
1879-0003
1879-0003
DOI:10.1016/j.ijbiomac.2024.134525