Regularization-Theory-Based Fast Torque Tracking Method for Interior Permanent Magnet Synchronous Machines
With the rapid growth of interior permanent magnet synchronous machines in electric vehicle applications, there is a need to generate torque tracking look-up tables that can both track the torque command and implement maximum torque per ampere (MTPA)/maximum torque per volt (MTPV). So far, most torq...
Saved in:
Published in | IEEE transactions on industrial electronics (1982) Vol. 70; no. 12; pp. 12113 - 12123 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | With the rapid growth of interior permanent magnet synchronous machines in electric vehicle applications, there is a need to generate torque tracking look-up tables that can both track the torque command and implement maximum torque per ampere (MTPA)/maximum torque per volt (MTPV). So far, most torque tracking methods require a large amount of test points, giving rise to long test time and workloads. This article proposes a fast torque tracking MTPA/MTPV look-up table generating method to improve the efficiency. The proposed method is based on a machine learning regularization theory, using an L1/L2 regularization to establish a data-driven torque tracking model. Then, a Lagrange dual principle is introduced to solve the unknown parameters, so that the look-up tables of optimal dq -axis currents are yielded by a global optimization solver. Experimental results show that the proposed method can generate the look-up tables with the same accuracy as classical methods, but requires less test points and testing time. As a result, the testing work loads are reduced, as the time cost is only 10%-15% of the classical methods. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2023.3237895 |