Development of banana pseudo stem cellulose fiber based magnetic nanocomposite as an adsorbent for dye removal

A hybrid hydrogel nanocomposite derived from cellulose fiber extracted from Banana Pseudo Stem (BPS) was developed as an adsorbent material for wastewater treatment. The hydrogel was developed by graft copolymerization of N-hydroxyethylacrylamide on Cellulose Fiber (BPSCF-g-PHEAAm) with potassium pe...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological macromolecules Vol. 278; no. Pt 2; p. 134877
Main Authors Shruthi, S., Vishalakshi, B.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A hybrid hydrogel nanocomposite derived from cellulose fiber extracted from Banana Pseudo Stem (BPS) was developed as an adsorbent material for wastewater treatment. The hydrogel was developed by graft copolymerization of N-hydroxyethylacrylamide on Cellulose Fiber (BPSCF-g-PHEAAm) with potassium peroxodisulphate (KPS) as an initiator and N, N′-methylene bisacrylamide (MBA) as a crosslinker using microwave irradiation. Magnetic nanoparticles generated by an in-situ method were incorporated into the network structure. Fourier Transform Infrared Spectroscopy (FTIR), Powder X-ray Diffraction (XRD), Thermogravimetric analysis (TGA), Vibrating Sample Magnetometer (VSM), Brunauer-Emmett-Teller analysis (BET), Field Emission Scanning Electron Microscopy (FESEM), and Energy Dispersive Spectrometer (EDS) were employed. The adsorption capacities of hydrogel and its nanocomposite were evaluated using Methylene Blue (MB) and Crystal Violet (CV) as model dyes. The parent gel exhibited the maximum absorption capacity of 235, and 219 mg g−1 towards MB and CV respectively which was enhanced to 320 and 303 mg g−1 for the nanocomposite. Adsorption data were best fitted with the pseudo-second-order kinetic model and the Freundlich isotherm model. Negative ΔG° and positive ΔH° indicated spontaneous and endothermic adsorption. Desorption was effective to an extent of 99 % in the HCl medium suggesting high reusability potential of the developed adsorbent material.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0141-8130
1879-0003
1879-0003
DOI:10.1016/j.ijbiomac.2024.134877