Deep Imbalanced Separation Network: A Holistic Fault Detection Framework Considering Class-Imbalance and Partial Label-Unknown

The challenges of class-imbalance and partially unknown training labels often arise in fault detection tasks. When these two problems occur simultaneously, existing imbalanced classification methods cannot be directly used due to the absence of the label, and the class-imbalance would lead to severe...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial informatics Vol. 20; no. 11; pp. 13026 - 13035
Main Authors Qian, Min, Li, Yan-Fu, Wu, Hui
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.11.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The challenges of class-imbalance and partially unknown training labels often arise in fault detection tasks. When these two problems occur simultaneously, existing imbalanced classification methods cannot be directly used due to the absence of the label, and the class-imbalance would lead to severe bias prediction. In this study, we proposed a novel deep imbalance separation network (deepImSN) framework that is capable of dealing with fault detection problems with both class imbalance and partially unknown labels. This framework integrates the one-class learning concept into the positive-unlabeled (PU) learning theory for the first time. It alleviates the bias of the class-imbalance while making full use of the limited label information in the PU set to optimize the feature space and guide model training. The proposed deepImSN is designed to be used in different scenarios. It can accurately complete the fault detection task whether only part of fault samples or normal samples are labeled, and the class-prior is known or unknown. Experimental results on real-world problems, such as high-speed rail wheels fault inspection and wafer map fault detection, demonstrate that deepImSN outperforms existing methods in various experimental conditions.
AbstractList The challenges of class-imbalance and partially unknown training labels often arise in fault detection tasks. When these two problems occur simultaneously, existing imbalanced classification methods cannot be directly used due to the absence of the label, and the class-imbalance would lead to severe bias prediction. In this study, we proposed a novel deep imbalance separation network (deepImSN) framework that is capable of dealing with fault detection problems with both class imbalance and partially unknown labels. This framework integrates the one-class learning concept into the positive-unlabeled (PU) learning theory for the first time. It alleviates the bias of the class-imbalance while making full use of the limited label information in the PU set to optimize the feature space and guide model training. The proposed deepImSN is designed to be used in different scenarios. It can accurately complete the fault detection task whether only part of fault samples or normal samples are labeled, and the class-prior is known or unknown. Experimental results on real-world problems, such as high-speed rail wheels fault inspection and wafer map fault detection, demonstrate that deepImSN outperforms existing methods in various experimental conditions.
Author Li, Yan-Fu
Qian, Min
Wu, Hui
Author_xml – sequence: 1
  givenname: Min
  orcidid: 0000-0002-8622-1773
  surname: Qian
  fullname: Qian, Min
  email: qianmin.tsinghua@outlook.com
  organization: Huawei Technologies Company, Ltd., Beijing, China
– sequence: 2
  givenname: Yan-Fu
  orcidid: 0000-0001-5755-7115
  surname: Li
  fullname: Li, Yan-Fu
  email: liyanfu@tsinghua.edu.cn
  organization: Department of Industrial Engineering, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Hui
  orcidid: 0000-0002-8881-3203
  surname: Wu
  fullname: Wu, Hui
  email: wuh@hit.edu.cn
  organization: School of Economics and Management, Harbin Institute of Technology, Weihai, China
BookMark eNpNkE1Lw0AQhhepoFXvHjwseE6d_UjSeCut1UBRwfYcJtuJpE13625K8eJvN7UiHoaZw_O-A0-f9ayzxNi1gIEQkN3N83wgQeqB0kqAHp6wc5FpEQHE0OvuOBaRkqDOWD-EFYBKQWXn7GtCtOX5psQGraElf6MtemxrZ_kztXvn1_d8xJ9cU4e2NnyKu6blE2rJ_DBTjxs6UHzsbKiX5Gv7zscNhhD9tXK0S_6Kvq2x4TMsqYkWdm3d3l6y0wqbQFe_-4Itpg_z8VM0e3nMx6NZZKSO20ibJKMMyqHJtBTSJMmQtCwxQ1kZYVRqpBISyYCIBdBSYlqV2lRICQLFlbpgt8ferXcfOwptsXI7b7uXRRfUQ5kKmXYUHCnjXQieqmLr6w36z0JAcbBcdJaLg-Xi13IXuTlGaiL6hycy60Z9A-ehe50
CODEN ITIICH
Cites_doi 10.1090/s0002-9947-1950-0051437-7
10.1109/TIM.2020.3033939
10.1609/aaai.v34i04.5848
10.1109/TNNLS.2018.2817538
10.3390/pr11051507
10.1145/3418284
10.1109/TSM.2020.3020985
10.1609/aaai.v32i1.11715
10.1023/B:MACH.0000008084.60811.49
10.1109/TII.2022.3216816
10.1016/j.knosys.2021.106878
10.1109/TII.2021.3125385
10.1109/TII.2022.3154786
10.1016/j.ins.2021.01.002
10.3390/electronics10232888
10.1016/j.measurement.2020.108191
10.1109/TR.2021.3138448
10.24963/ijcai.2021/412
10.3390/app11125599
10.1109/TII.2020.3008010
10.1109/LSP.2018.2889273
10.1016/j.isatra.2021.02.042
10.1007/s10462-020-09934-2
10.1002/9781118646106.ch4
10.3390/en14092509
10.1109/TIM.2020.2992829
10.1109/TKDE.2008.239
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2024.3431048
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 13035
ExternalDocumentID 10_1109_TII_2024_3431048
10629062
Genre orig-research
GrantInformation_xml – fundername: Beijing Municipality Natural Science Foundation-Rail Transit Joint Research Program
  grantid: L231020
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c245t-4c69e90b8c94212c668e42ba9a2fc1c37c2312aec01510ed2a7fb4cfae6a0e5f3
IEDL.DBID RIE
ISSN 1551-3203
IngestDate Mon Jun 30 10:17:51 EDT 2025
Tue Jul 01 03:00:30 EDT 2025
Wed Aug 27 02:02:26 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-4c69e90b8c94212c668e42ba9a2fc1c37c2312aec01510ed2a7fb4cfae6a0e5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5755-7115
0000-0002-8622-1773
0000-0002-8881-3203
PQID 3124827127
PQPubID 85507
PageCount 10
ParticipantIDs crossref_primary_10_1109_TII_2024_3431048
ieee_primary_10629062
proquest_journals_3124827127
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
Schlkopf (ref25) 1999; 12
ref31
ref30
ref11
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
Ruff (ref27) 2018
Yang (ref28) 2020; 33
ref24
ref23
ref26
ref20
ref22
ref21
Kiryo (ref29) 2017; 30
Agency (ref4) 2019
ref8
ref7
ref9
ref3
ref6
ref5
References_xml – ident: ref24
  doi: 10.1090/s0002-9947-1950-0051437-7
– ident: ref32
  doi: 10.1109/TIM.2020.3033939
– ident: ref30
  doi: 10.1609/aaai.v34i04.5848
– ident: ref16
  doi: 10.1109/TNNLS.2018.2817538
– ident: ref3
  doi: 10.3390/pr11051507
– ident: ref7
  doi: 10.1145/3418284
– ident: ref31
  doi: 10.1109/TSM.2020.3020985
– ident: ref22
  doi: 10.1609/aaai.v32i1.11715
– ident: ref23
  doi: 10.1023/B:MACH.0000008084.60811.49
– volume: 30
  year: 2017
  ident: ref29
  article-title: Positive-unlabeled learning with non-negative risk estimator
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref9
  doi: 10.1109/TII.2022.3216816
– start-page: 4393
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2018
  ident: ref27
  article-title: Deep one-class classification
– ident: ref8
  doi: 10.1016/j.knosys.2021.106878
– year: 2019
  ident: ref4
  article-title: How high-speed railways are madeA closer look at CRRC
– ident: ref5
  doi: 10.1109/TII.2021.3125385
– volume: 33
  start-page: 19290
  year: 2020
  ident: ref28
  article-title: Rethinking the value of labels for improving class-imbalanced learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 12
  year: 1999
  ident: ref25
  article-title: Support vector method for novelty detection
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref12
  doi: 10.1109/TII.2022.3154786
– ident: ref20
  doi: 10.1016/j.ins.2021.01.002
– ident: ref1
  doi: 10.3390/electronics10232888
– ident: ref13
  doi: 10.1016/j.measurement.2020.108191
– ident: ref11
  doi: 10.1109/TR.2021.3138448
– ident: ref21
  doi: 10.24963/ijcai.2021/412
– ident: ref19
  doi: 10.3390/app11125599
– ident: ref15
  doi: 10.1109/TII.2020.3008010
– ident: ref26
  doi: 10.1109/LSP.2018.2889273
– ident: ref6
  doi: 10.1016/j.isatra.2021.02.042
– ident: ref2
  doi: 10.1007/s10462-020-09934-2
– ident: ref14
  doi: 10.1002/9781118646106.ch4
– ident: ref18
  doi: 10.3390/en14092509
– ident: ref17
  doi: 10.1109/TIM.2020.2992829
– ident: ref10
  doi: 10.1109/TKDE.2008.239
SSID ssj0037039
Score 2.4118168
Snippet The challenges of class-imbalance and partially unknown training labels often arise in fault detection tasks. When these two problems occur simultaneously,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 13026
SubjectTerms Bias
Class-imbalance
Data models
Fault detection
High speed rail
label unknown
Labeling
Labels
Learning theory
Optimization
positive-unlabeled (PU) learning
Separation
Supervised learning
Training
Title Deep Imbalanced Separation Network: A Holistic Fault Detection Framework Considering Class-Imbalance and Partial Label-Unknown
URI https://ieeexplore.ieee.org/document/10629062
https://www.proquest.com/docview/3124827127
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gJzjwRgwGyoELh442TdqF28SYNgQTEpu0W5Wk7oXRTtBdOPDbcdIWTSAkbj2kkRXbsR3bnwm5BHQ5LJSUJzIjPB6ngDqnkCGGSRZrxYXL6D5OotGM38_FvG5Wd70wAOCKz6BrP10uPy3Myj6VoYZHFp0cb9xNjNyqZq3m2g1RdKUDRxWBFzI_bHKSvryejscYCTLeDdFc-nbUz5oNckNVft3EzrwMd8mkIayqKnnprkrdNR8_MBv_Tfke2akdTdqvJGOfbEB-QLbX4AcPyecAYEnHr9qWNxpI6TNUSOBFTidVefgN7dNRsXBoznSoVouSDqB05Vs5HTaFXbQZ-4nbUjdm0_velao8pU9WQJGaB6Vh4c1y-5KXH5HZ8G56O_LqeQyeYVyUHjeRBOnrnpE2j2yiqAecaSUVy0xgwtigs8gUGHQxAh9SpuJMc5MpiJQPIguPSSsvcjghNIwMOiJa6Zj7XAnoxUxHKki1FlKHsW6Tq4ZDybKC3UhcuOLLBLmZWG4mNTfb5Mge-Nq66qzbpNPwNKkV8z1BAi3wacDi0z9-OyNbdveq37BDWuXbCs7R8Sj1hRO4LzsG1VM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQGYCBZxHl6YGFISVx7KRmq4CqhbZCopXYItu5LJQUQbow8Ns5OwmqQEhsGRLn5Hvad_cdIeeAIYeFkvJEZoTH4xRQ5xQyxDDJYq24cBnd0TjqT_ndk3iqmtVdLwwAuOIzaNtHl8tP52Zhr8pQwyOLTo4WdxUdvwjKdq3a8IYovNLBo4rAC5kf1llJX15OBgM8CzLeDtFh-nbYz5IXcmNVftli52B6W2Rck1bWlTy3F4Vum48fqI3_pn2bbFahJu2WsrFDViDfJRtLAIR75PMG4JUOXrQtcDSQ0kcoscDnOR2XBeJXtEv785nDc6Y9tZgV9AYKV8CV015d2kXrwZ-4LHWDNr3vVanKU_pgRRSpGSoNM2-a27u8vEmmvdvJdd-rJjJ4hnFReNxEEqSvO0baTLKJog5wppVULDOBCWOD4SJTYDDICHxImYozzU2mIFI-iCzcJ418nsMBoWFkMBTRSsfc50pAJ2Y6UkGqtZA6jHWLXNQcSl5L4I3EHVh8mSA3E8vNpOJmizTthi-9V-51ixzXPE0q1XxPkEALfRqw-PCPz87IWn8yGibDwfj-iKzbP5Xdh8ekUbwt4ATDkEKfOuH7AoRA2Jw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Imbalanced+Separation+Network%3A+A+Holistic+Fault+Detection+Framework+Considering+Class-Imbalance+and+Partial+Label-Unknown&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Qian%2C+Min&rft.au=Li%2C+Yan-Fu&rft.au=Wu%2C+Hui&rft.date=2024-11-01&rft.pub=IEEE&rft.issn=1551-3203&rft.volume=20&rft.issue=11&rft.spage=13026&rft.epage=13035&rft_id=info:doi/10.1109%2FTII.2024.3431048&rft.externalDocID=10629062
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon