Deep Imbalanced Separation Network: A Holistic Fault Detection Framework Considering Class-Imbalance and Partial Label-Unknown
The challenges of class-imbalance and partially unknown training labels often arise in fault detection tasks. When these two problems occur simultaneously, existing imbalanced classification methods cannot be directly used due to the absence of the label, and the class-imbalance would lead to severe...
Saved in:
Published in | IEEE transactions on industrial informatics Vol. 20; no. 11; pp. 13026 - 13035 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.11.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The challenges of class-imbalance and partially unknown training labels often arise in fault detection tasks. When these two problems occur simultaneously, existing imbalanced classification methods cannot be directly used due to the absence of the label, and the class-imbalance would lead to severe bias prediction. In this study, we proposed a novel deep imbalance separation network (deepImSN) framework that is capable of dealing with fault detection problems with both class imbalance and partially unknown labels. This framework integrates the one-class learning concept into the positive-unlabeled (PU) learning theory for the first time. It alleviates the bias of the class-imbalance while making full use of the limited label information in the PU set to optimize the feature space and guide model training. The proposed deepImSN is designed to be used in different scenarios. It can accurately complete the fault detection task whether only part of fault samples or normal samples are labeled, and the class-prior is known or unknown. Experimental results on real-world problems, such as high-speed rail wheels fault inspection and wafer map fault detection, demonstrate that deepImSN outperforms existing methods in various experimental conditions. |
---|---|
AbstractList | The challenges of class-imbalance and partially unknown training labels often arise in fault detection tasks. When these two problems occur simultaneously, existing imbalanced classification methods cannot be directly used due to the absence of the label, and the class-imbalance would lead to severe bias prediction. In this study, we proposed a novel deep imbalance separation network (deepImSN) framework that is capable of dealing with fault detection problems with both class imbalance and partially unknown labels. This framework integrates the one-class learning concept into the positive-unlabeled (PU) learning theory for the first time. It alleviates the bias of the class-imbalance while making full use of the limited label information in the PU set to optimize the feature space and guide model training. The proposed deepImSN is designed to be used in different scenarios. It can accurately complete the fault detection task whether only part of fault samples or normal samples are labeled, and the class-prior is known or unknown. Experimental results on real-world problems, such as high-speed rail wheels fault inspection and wafer map fault detection, demonstrate that deepImSN outperforms existing methods in various experimental conditions. |
Author | Li, Yan-Fu Qian, Min Wu, Hui |
Author_xml | – sequence: 1 givenname: Min orcidid: 0000-0002-8622-1773 surname: Qian fullname: Qian, Min email: qianmin.tsinghua@outlook.com organization: Huawei Technologies Company, Ltd., Beijing, China – sequence: 2 givenname: Yan-Fu orcidid: 0000-0001-5755-7115 surname: Li fullname: Li, Yan-Fu email: liyanfu@tsinghua.edu.cn organization: Department of Industrial Engineering, Tsinghua University, Beijing, China – sequence: 3 givenname: Hui orcidid: 0000-0002-8881-3203 surname: Wu fullname: Wu, Hui email: wuh@hit.edu.cn organization: School of Economics and Management, Harbin Institute of Technology, Weihai, China |
BookMark | eNpNkE1Lw0AQhhepoFXvHjwseE6d_UjSeCut1UBRwfYcJtuJpE13625K8eJvN7UiHoaZw_O-A0-f9ayzxNi1gIEQkN3N83wgQeqB0kqAHp6wc5FpEQHE0OvuOBaRkqDOWD-EFYBKQWXn7GtCtOX5psQGraElf6MtemxrZ_kztXvn1_d8xJ9cU4e2NnyKu6blE2rJ_DBTjxs6UHzsbKiX5Gv7zscNhhD9tXK0S_6Kvq2x4TMsqYkWdm3d3l6y0wqbQFe_-4Itpg_z8VM0e3nMx6NZZKSO20ibJKMMyqHJtBTSJMmQtCwxQ1kZYVRqpBISyYCIBdBSYlqV2lRICQLFlbpgt8ferXcfOwptsXI7b7uXRRfUQ5kKmXYUHCnjXQieqmLr6w36z0JAcbBcdJaLg-Xi13IXuTlGaiL6hycy60Z9A-ehe50 |
CODEN | ITIICH |
Cites_doi | 10.1090/s0002-9947-1950-0051437-7 10.1109/TIM.2020.3033939 10.1609/aaai.v34i04.5848 10.1109/TNNLS.2018.2817538 10.3390/pr11051507 10.1145/3418284 10.1109/TSM.2020.3020985 10.1609/aaai.v32i1.11715 10.1023/B:MACH.0000008084.60811.49 10.1109/TII.2022.3216816 10.1016/j.knosys.2021.106878 10.1109/TII.2021.3125385 10.1109/TII.2022.3154786 10.1016/j.ins.2021.01.002 10.3390/electronics10232888 10.1016/j.measurement.2020.108191 10.1109/TR.2021.3138448 10.24963/ijcai.2021/412 10.3390/app11125599 10.1109/TII.2020.3008010 10.1109/LSP.2018.2889273 10.1016/j.isatra.2021.02.042 10.1007/s10462-020-09934-2 10.1002/9781118646106.ch4 10.3390/en14092509 10.1109/TIM.2020.2992829 10.1109/TKDE.2008.239 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TII.2024.3431048 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0050 |
EndPage | 13035 |
ExternalDocumentID | 10_1109_TII_2024_3431048 10629062 |
Genre | orig-research |
GrantInformation_xml | – fundername: Beijing Municipality Natural Science Foundation-Rail Transit Joint Research Program grantid: L231020 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c245t-4c69e90b8c94212c668e42ba9a2fc1c37c2312aec01510ed2a7fb4cfae6a0e5f3 |
IEDL.DBID | RIE |
ISSN | 1551-3203 |
IngestDate | Mon Jun 30 10:17:51 EDT 2025 Tue Jul 01 03:00:30 EDT 2025 Wed Aug 27 02:02:26 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c245t-4c69e90b8c94212c668e42ba9a2fc1c37c2312aec01510ed2a7fb4cfae6a0e5f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5755-7115 0000-0002-8622-1773 0000-0002-8881-3203 |
PQID | 3124827127 |
PQPubID | 85507 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1109_TII_2024_3431048 ieee_primary_10629062 proquest_journals_3124827127 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on industrial informatics |
PublicationTitleAbbrev | TII |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 Schlkopf (ref25) 1999; 12 ref31 ref30 ref11 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 Ruff (ref27) 2018 Yang (ref28) 2020; 33 ref24 ref23 ref26 ref20 ref22 ref21 Kiryo (ref29) 2017; 30 Agency (ref4) 2019 ref8 ref7 ref9 ref3 ref6 ref5 |
References_xml | – ident: ref24 doi: 10.1090/s0002-9947-1950-0051437-7 – ident: ref32 doi: 10.1109/TIM.2020.3033939 – ident: ref30 doi: 10.1609/aaai.v34i04.5848 – ident: ref16 doi: 10.1109/TNNLS.2018.2817538 – ident: ref3 doi: 10.3390/pr11051507 – ident: ref7 doi: 10.1145/3418284 – ident: ref31 doi: 10.1109/TSM.2020.3020985 – ident: ref22 doi: 10.1609/aaai.v32i1.11715 – ident: ref23 doi: 10.1023/B:MACH.0000008084.60811.49 – volume: 30 year: 2017 ident: ref29 article-title: Positive-unlabeled learning with non-negative risk estimator publication-title: Adv. Neural Inf. Process. Syst. – ident: ref9 doi: 10.1109/TII.2022.3216816 – start-page: 4393 volume-title: Proc. Int. Conf. Mach. Learn. year: 2018 ident: ref27 article-title: Deep one-class classification – ident: ref8 doi: 10.1016/j.knosys.2021.106878 – year: 2019 ident: ref4 article-title: How high-speed railways are madeA closer look at CRRC – ident: ref5 doi: 10.1109/TII.2021.3125385 – volume: 33 start-page: 19290 year: 2020 ident: ref28 article-title: Rethinking the value of labels for improving class-imbalanced learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 12 year: 1999 ident: ref25 article-title: Support vector method for novelty detection publication-title: Adv. Neural Inf. Process. Syst. – ident: ref12 doi: 10.1109/TII.2022.3154786 – ident: ref20 doi: 10.1016/j.ins.2021.01.002 – ident: ref1 doi: 10.3390/electronics10232888 – ident: ref13 doi: 10.1016/j.measurement.2020.108191 – ident: ref11 doi: 10.1109/TR.2021.3138448 – ident: ref21 doi: 10.24963/ijcai.2021/412 – ident: ref19 doi: 10.3390/app11125599 – ident: ref15 doi: 10.1109/TII.2020.3008010 – ident: ref26 doi: 10.1109/LSP.2018.2889273 – ident: ref6 doi: 10.1016/j.isatra.2021.02.042 – ident: ref2 doi: 10.1007/s10462-020-09934-2 – ident: ref14 doi: 10.1002/9781118646106.ch4 – ident: ref18 doi: 10.3390/en14092509 – ident: ref17 doi: 10.1109/TIM.2020.2992829 – ident: ref10 doi: 10.1109/TKDE.2008.239 |
SSID | ssj0037039 |
Score | 2.4118168 |
Snippet | The challenges of class-imbalance and partially unknown training labels often arise in fault detection tasks. When these two problems occur simultaneously,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 13026 |
SubjectTerms | Bias Class-imbalance Data models Fault detection High speed rail label unknown Labeling Labels Learning theory Optimization positive-unlabeled (PU) learning Separation Supervised learning Training |
Title | Deep Imbalanced Separation Network: A Holistic Fault Detection Framework Considering Class-Imbalance and Partial Label-Unknown |
URI | https://ieeexplore.ieee.org/document/10629062 https://www.proquest.com/docview/3124827127 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gJzjwRgwGyoELh442TdqF28SYNgQTEpu0W5Wk7oXRTtBdOPDbcdIWTSAkbj2kkRXbsR3bnwm5BHQ5LJSUJzIjPB6ngDqnkCGGSRZrxYXL6D5OotGM38_FvG5Wd70wAOCKz6BrP10uPy3Myj6VoYZHFp0cb9xNjNyqZq3m2g1RdKUDRxWBFzI_bHKSvryejscYCTLeDdFc-nbUz5oNckNVft3EzrwMd8mkIayqKnnprkrdNR8_MBv_Tfke2akdTdqvJGOfbEB-QLbX4AcPyecAYEnHr9qWNxpI6TNUSOBFTidVefgN7dNRsXBoznSoVouSDqB05Vs5HTaFXbQZ-4nbUjdm0_velao8pU9WQJGaB6Vh4c1y-5KXH5HZ8G56O_LqeQyeYVyUHjeRBOnrnpE2j2yiqAecaSUVy0xgwtigs8gUGHQxAh9SpuJMc5MpiJQPIguPSSsvcjghNIwMOiJa6Zj7XAnoxUxHKki1FlKHsW6Tq4ZDybKC3UhcuOLLBLmZWG4mNTfb5Mge-Nq66qzbpNPwNKkV8z1BAi3wacDi0z9-OyNbdveq37BDWuXbCs7R8Sj1hRO4LzsG1VM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQGYCBZxHl6YGFISVx7KRmq4CqhbZCopXYItu5LJQUQbow8Ns5OwmqQEhsGRLn5Hvad_cdIeeAIYeFkvJEZoTH4xRQ5xQyxDDJYq24cBnd0TjqT_ndk3iqmtVdLwwAuOIzaNtHl8tP52Zhr8pQwyOLTo4WdxUdvwjKdq3a8IYovNLBo4rAC5kf1llJX15OBgM8CzLeDtFh-nbYz5IXcmNVftli52B6W2Rck1bWlTy3F4Vum48fqI3_pn2bbFahJu2WsrFDViDfJRtLAIR75PMG4JUOXrQtcDSQ0kcoscDnOR2XBeJXtEv785nDc6Y9tZgV9AYKV8CV015d2kXrwZ-4LHWDNr3vVanKU_pgRRSpGSoNM2-a27u8vEmmvdvJdd-rJjJ4hnFReNxEEqSvO0baTLKJog5wppVULDOBCWOD4SJTYDDICHxImYozzU2mIFI-iCzcJ418nsMBoWFkMBTRSsfc50pAJ2Y6UkGqtZA6jHWLXNQcSl5L4I3EHVh8mSA3E8vNpOJmizTthi-9V-51ixzXPE0q1XxPkEALfRqw-PCPz87IWn8yGibDwfj-iKzbP5Xdh8ekUbwt4ATDkEKfOuH7AoRA2Jw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Imbalanced+Separation+Network%3A+A+Holistic+Fault+Detection+Framework+Considering+Class-Imbalance+and+Partial+Label-Unknown&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Qian%2C+Min&rft.au=Li%2C+Yan-Fu&rft.au=Wu%2C+Hui&rft.date=2024-11-01&rft.pub=IEEE&rft.issn=1551-3203&rft.volume=20&rft.issue=11&rft.spage=13026&rft.epage=13035&rft_id=info:doi/10.1109%2FTII.2024.3431048&rft.externalDocID=10629062 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |