A Nonlocal Cahn–Hilliard–Darcy System with Singular Potential, Degenerate Mobility, and Sources
We consider a Cahn–Hilliard–Darcy system for an incompressible mixture of two fluids we already analyzed in [ 9 ]. In this system, the relative concentration difference φ obeys a convective nonlocal Cahn–Hilliard equation with degenerate mobility and singular (e.g., logarithmic) potential, while the...
Saved in:
Published in | Applied mathematics & optimization Vol. 91; no. 2; p. 39 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider a Cahn–Hilliard–Darcy system for an incompressible mixture of two fluids we already analyzed in [
9
]. In this system, the relative concentration difference
φ
obeys a convective nonlocal Cahn–Hilliard equation with degenerate mobility and singular (e.g., logarithmic) potential, while the volume averaged fluid velocity
u
is given by a Darcy’s law subject to the Korteweg force
μ
∇
φ
, where the chemical potential
μ
is defined by means of a nonlocal Helmholtz free energy. The kinematic viscosity
η
depends on
φ
. With respect to the quoted contribution, here we assume that the Darcy’s law is subject to gravity and to a given additional source. Moreover, we suppose that the Cahn–Hilliard equation and the chemical potential contain source terms. Our main goal is to establish the existence of two notions of weak solutions. The first, called “generalized” weak solution, is based a convenient splitting of
μ
so that the entropy derivative does not need to be integrable. The second is slightly stronger and allows to reconstruct
μ
and to prove the validity of a canonical energy identity. For this reason, the latter is called “natural” weak solution. The rigorous relation between the two notions of weak solution is also analyzed. The existence of a global attractor for generalized weak solutions and time independent sources is then demonstrated via the theory of generalized semiflows introduced by J.M. Ball. |
---|---|
AbstractList | We consider a Cahn–Hilliard–Darcy system for an incompressible mixture of two fluids we already analyzed in [9]. In this system, the relative concentration difference $$\varphi $$ φ obeys a convective nonlocal Cahn–Hilliard equation with degenerate mobility and singular (e.g., logarithmic) potential, while the volume averaged fluid velocity $$\varvec{u}$$ u is given by a Darcy’s law subject to the Korteweg force $$\mu \nabla \varphi $$ μ ∇ φ , where the chemical potential $$\mu $$ μ is defined by means of a nonlocal Helmholtz free energy. The kinematic viscosity $$\eta $$ η depends on $$\varphi $$ φ . With respect to the quoted contribution, here we assume that the Darcy’s law is subject to gravity and to a given additional source. Moreover, we suppose that the Cahn–Hilliard equation and the chemical potential contain source terms. Our main goal is to establish the existence of two notions of weak solutions. The first, called “generalized” weak solution, is based a convenient splitting of $$\mu $$ μ so that the entropy derivative does not need to be integrable. The second is slightly stronger and allows to reconstruct $$\mu $$ μ and to prove the validity of a canonical energy identity. For this reason, the latter is called “natural” weak solution. The rigorous relation between the two notions of weak solution is also analyzed. The existence of a global attractor for generalized weak solutions and time independent sources is then demonstrated via the theory of generalized semiflows introduced by J.M. Ball. We consider a Cahn–Hilliard–Darcy system for an incompressible mixture of two fluids we already analyzed in [ 9 ]. In this system, the relative concentration difference φ obeys a convective nonlocal Cahn–Hilliard equation with degenerate mobility and singular (e.g., logarithmic) potential, while the volume averaged fluid velocity u is given by a Darcy’s law subject to the Korteweg force μ ∇ φ , where the chemical potential μ is defined by means of a nonlocal Helmholtz free energy. The kinematic viscosity η depends on φ . With respect to the quoted contribution, here we assume that the Darcy’s law is subject to gravity and to a given additional source. Moreover, we suppose that the Cahn–Hilliard equation and the chemical potential contain source terms. Our main goal is to establish the existence of two notions of weak solutions. The first, called “generalized” weak solution, is based a convenient splitting of μ so that the entropy derivative does not need to be integrable. The second is slightly stronger and allows to reconstruct μ and to prove the validity of a canonical energy identity. For this reason, the latter is called “natural” weak solution. The rigorous relation between the two notions of weak solution is also analyzed. The existence of a global attractor for generalized weak solutions and time independent sources is then demonstrated via the theory of generalized semiflows introduced by J.M. Ball. We consider a Cahn–Hilliard–Darcy system for an incompressible mixture of two fluids we already analyzed in [9]. In this system, the relative concentration difference φ obeys a convective nonlocal Cahn–Hilliard equation with degenerate mobility and singular (e.g., logarithmic) potential, while the volume averaged fluid velocity u is given by a Darcy’s law subject to the Korteweg force μ∇φ, where the chemical potential μ is defined by means of a nonlocal Helmholtz free energy. The kinematic viscosity η depends on φ. With respect to the quoted contribution, here we assume that the Darcy’s law is subject to gravity and to a given additional source. Moreover, we suppose that the Cahn–Hilliard equation and the chemical potential contain source terms. Our main goal is to establish the existence of two notions of weak solutions. The first, called “generalized” weak solution, is based a convenient splitting of μ so that the entropy derivative does not need to be integrable. The second is slightly stronger and allows to reconstruct μ and to prove the validity of a canonical energy identity. For this reason, the latter is called “natural” weak solution. The rigorous relation between the two notions of weak solution is also analyzed. The existence of a global attractor for generalized weak solutions and time independent sources is then demonstrated via the theory of generalized semiflows introduced by J.M. Ball. |
ArticleNumber | 39 |
Author | Grasselli, Maurizio Cavaterra, Cecilia Frigeri, Sergio |
Author_xml | – sequence: 1 givenname: Cecilia orcidid: 0000-0002-2754-7714 surname: Cavaterra fullname: Cavaterra, Cecilia organization: Dipartimento di Matematica “F. Enriques”, Università degli Studi di Milano, Istituto di Matematica Applicata e Tecnologie Informatiche “Enrico Magenes”, CNR – sequence: 2 givenname: Sergio orcidid: 0000-0002-7582-5205 surname: Frigeri fullname: Frigeri, Sergio organization: Dipartimento di Ingegneria (DENG), Universitá Telematica Pegaso – sequence: 3 givenname: Maurizio orcidid: 0000-0003-2521-2926 surname: Grasselli fullname: Grasselli, Maurizio email: maurizio.grasselli@polimi.it organization: Dipartimento di Matematica, Politecnico di Milano |
BookMark | eNp9kE1OwzAQRi1UJNrCBVhZYtuAYyduvKxaoEjlRyqsLdeZtKlSu9iuUHbcgRtyEgxBYsdmZhbvmxm9AeoZawCh85RcpoSMrzwhNMsTQvMkJZSJJD9C_TRjNCGc8B7qEyLyJOMpP0ED77ck8oyzPtIT_GBNY7Vq8FRtzOf7x7xumlq5Mo4z5XSLl60PsMNvddjgZW3Wh0Y5_GQDmFCrZoRnsAYDTgXA93ZVN3VoR1iZEi_twWnwp-i4Uo2Hs98-RC8318_TebJ4vL2bThaJplkWYi2oFhzoaqyFVlVWQKVFoXVeAIMxqwQvOWWrkpeiZKQgFcm4oqosuEg5CDZEF93evbOvB_BBbuMDJp6ULOWFYDE0jhTtKO2s9w4quXf1TrlWpkR-y5SdTBllyh-ZMo8h1oV8hM0a3N_qf1Jf9UJ7Pw |
Cites_doi | 10.1142/S0218202511500138 10.1016/j.jde.2019.11.049 10.3934/dcdss.2022008 10.1103/PhysRevE.77.051129 10.1007/s10883-020-09490-6 10.1016/j.anihpc.2020.08.005 10.1007/s00021-019-0467-9 10.1016/j.jde.2021.01.012 10.1016/j.jde.2021.12.014 10.1007/s00021-021-00648-1 10.1051/cocv/2024041 10.1007/s00021-017-0334-5 10.1007/978-1-4612-1015-3 10.1007/s003329900037 10.1137/S0036141094267662 10.1063/1.1425844 10.1007/s00332-016-9292-y 10.4310/DPDE.2012.v9.n4.a1 10.1088/1361-6544/aaedd0 10.1088/0951-7715/24/6/001 10.1063/1.1425843 10.1093/oso/9780198502777.001.0001 10.1016/j.anihpc.2017.10.002 10.1016/j.jde.2004.07.003 10.1016/j.jmaa.2011.02.003 10.1016/j.anihpc.2012.06.003 10.1007/s10587-007-0114-0 10.1088/1361-6544/aad52a 10.1098/rspa.1998.0273 10.1007/978-1-4614-5975-0 10.1016/j.jde.2021.05.045 10.1142/S0218202596000341 10.1007/BF01762360 10.1016/j.jde.2015.04.009 10.1016/j.jde.2021.03.052 10.1007/s00245-019-09555-4 10.1137/20M1376443 10.1016/j.jmaa.2011.08.008 10.3934/Math.2016.3.318 10.1038/s41598-023-27630-3 10.1088/0951-7715/28/5/1257 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 Copyright Springer Nature B.V. Apr 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Springer Nature B.V. Apr 2025 |
DBID | C6C AAYXX CITATION JQ2 |
DOI | 10.1007/s00245-025-10239-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | CrossRef ProQuest Computer Science Collection |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1432-0606 |
ExternalDocumentID | 10_1007_s00245_025_10239_5 |
GrantInformation_xml | – fundername: Politecnico di Milano |
GroupedDBID | -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHQJS AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBA EBLON EBR EBS EBU EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 T9H TH9 TN5 TSG TSK TSV TUC TUS TWZ U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WHG WJK WK8 YLTOR Z45 ZL0 ZMTXR ZWQNP ZY4 ~8M ~EX AAYXX ABFSG ACSTC ADXHL AEZWR AFHIU AFOHR AHWEU AIXLP AMVHM ATHPR CITATION PHGZM ABRTQ JQ2 |
ID | FETCH-LOGICAL-c244t-c282c96e2b7c9caf48efc98cc58e3e73f96d623bd6d9d3080f046a2ad86916e93 |
IEDL.DBID | C6C |
ISSN | 0095-4616 |
IngestDate | Fri Jul 25 19:22:54 EDT 2025 Tue Jul 01 05:16:52 EDT 2025 Thu Apr 17 08:21:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Degenerate mobility Darcy’s law Weak solutions Nonlocal free energy 35Q35 76D27 76T06 37L30 Cahn–Hilliard equation Singular potential Global attractor |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c244t-c282c96e2b7c9caf48efc98cc58e3e73f96d623bd6d9d3080f046a2ad86916e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7582-5205 0000-0002-2754-7714 0000-0003-2521-2926 |
OpenAccessLink | https://doi.org/10.1007/s00245-025-10239-5 |
PQID | 3168933087 |
PQPubID | 47316 |
ParticipantIDs | proquest_journals_3168933087 crossref_primary_10_1007_s00245_025_10239_5 springer_journals_10_1007_s00245_025_10239_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250400 2025-04-00 20250401 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 4 year: 2025 text: 20250400 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Applied mathematics & optimization |
PublicationTitleAbbrev | Appl Math Optim |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | S Dharmatti (10239_CR14) 2021; 27 F Della Porta (10239_CR16) 2018; 31 J Lowengrub (10239_CR38) 1998; 454 J Simon (10239_CR42) 1986; 146 A Kulkarni (10239_CR32) 2023; 13 A Miranville (10239_CR40) 2021; 294 CM Elliott (10239_CR17) 1996; 27 H-G Lee (10239_CR34) 2002; 14 H Garcke (10239_CR24) 2016; 1 10239_CR45 S Frigeri (10239_CR23) 2015; 28 M Gurtin (10239_CR28) 1996; 6 G Schimperna (10239_CR41) 2022; 15 WP Ziemer (10239_CR48) 1989 J Sprekels (10239_CR44) 2021; 83 H Abels (10239_CR2) 2012; 22 A Giorgini (10239_CR27) 2022; 54 P Colli (10239_CR10) 2012; 386 M Conti (10239_CR12) 2020; 268 S Frigeri (10239_CR18) 2020; 38 E Khain (10239_CR30) 2008; 77 L Dedé (10239_CR15) 2018; 20 S Frigeri (10239_CR21) 2019; 32 10239_CR8 10239_CR7 10239_CR3 X Wang (10239_CR47) 2013; 30 J Bedrossian (10239_CR5) 2011; 24 A Giorgini (10239_CR25) 2020; 22 H-G Lee (10239_CR35) 2002; 14 KF Lam (10239_CR33) 2022; 312 S Frigeri (10239_CR22) 2012; 9 S-O Londen (10239_CR37) 2011; 379 C Cavaterra (10239_CR9) 2022; 24 S Frigeri (10239_CR19) 2016; 26 S Melchionna (10239_CR39) 2014; 24 J Jiang (10239_CR29) 2015; 259 M Abatangelo (10239_CR1) 2024; 30 P Colli (10239_CR11) 2007; 57 PW Bates (10239_CR4) 2005; 212 X Wang (10239_CR46) 2012; 78 S Frigeri (10239_CR20) 2021; 287 T Cazenave (10239_CR13) 1998 P Knopf (10239_CR31) 2021; 280 S-O Londen (10239_CR36) 2011; 4 A Giorgini (10239_CR26) 2018; 35 F Boyer (10239_CR6) 1999; 20 H Sohr (10239_CR43) 2001 |
References_xml | – volume: 22 start-page: 1150013 year: 2012 ident: 10239_CR2 publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202511500138 – volume: 268 start-page: 6350 year: 2020 ident: 10239_CR12 publication-title: J. Different. Equ. doi: 10.1016/j.jde.2019.11.049 – volume: 15 start-page: 2305 year: 2022 ident: 10239_CR41 publication-title: Discrete Contin. Dyn. Syst. Ser. S doi: 10.3934/dcdss.2022008 – volume: 77 year: 2008 ident: 10239_CR30 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.77.051129 – volume: 27 start-page: 221 year: 2021 ident: 10239_CR14 publication-title: J. Dyn. Control Syst. doi: 10.1007/s10883-020-09490-6 – volume: 38 start-page: 647 year: 2020 ident: 10239_CR18 publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire doi: 10.1016/j.anihpc.2020.08.005 – volume: 22 start-page: 5 year: 2020 ident: 10239_CR25 publication-title: J. Math. Fluid Mech. doi: 10.1007/s00021-019-0467-9 – volume: 280 start-page: 236 year: 2021 ident: 10239_CR31 publication-title: J. Different. Equ. doi: 10.1016/j.jde.2021.01.012 – volume: 312 start-page: 237 year: 2022 ident: 10239_CR33 publication-title: J. Different. Equ. doi: 10.1016/j.jde.2021.12.014 – volume: 24 start-page: 13 year: 2022 ident: 10239_CR9 publication-title: J. Math. Fluid Mech. doi: 10.1007/s00021-021-00648-1 – volume: 30 start-page: 52 year: 2024 ident: 10239_CR1 publication-title: ESAIM Control Optim. Calc. Var. doi: 10.1051/cocv/2024041 – volume: 20 start-page: 531 year: 2018 ident: 10239_CR15 publication-title: J. Math. Fluid Mech. doi: 10.1007/s00021-017-0334-5 – volume-title: Weakly Differentiable Functions year: 1989 ident: 10239_CR48 doi: 10.1007/978-1-4612-1015-3 – ident: 10239_CR3 doi: 10.1007/s003329900037 – volume: 20 start-page: 175 year: 1999 ident: 10239_CR6 publication-title: Asymptot. Anal. – volume: 27 start-page: 404 year: 1996 ident: 10239_CR17 publication-title: SIAM J. Math. Anal. doi: 10.1137/S0036141094267662 – volume: 14 start-page: 514 year: 2002 ident: 10239_CR35 publication-title: Phys. Fluids doi: 10.1063/1.1425844 – volume: 26 start-page: 847 year: 2016 ident: 10239_CR19 publication-title: J. Nonlinear Sci. doi: 10.1007/s00332-016-9292-y – volume: 9 start-page: 273 year: 2012 ident: 10239_CR22 publication-title: Dyn. Partial Differ. Equ. doi: 10.4310/DPDE.2012.v9.n4.a1 – volume: 32 start-page: 678 year: 2019 ident: 10239_CR21 publication-title: Nonlinearity doi: 10.1088/1361-6544/aaedd0 – volume: 24 start-page: 1683 year: 2011 ident: 10239_CR5 publication-title: Nonlinearity doi: 10.1088/0951-7715/24/6/001 – volume: 14 start-page: 492 year: 2002 ident: 10239_CR34 publication-title: Phys. Fluids doi: 10.1063/1.1425843 – volume-title: An Introduction to Semilinear Evolution Equations year: 1998 ident: 10239_CR13 doi: 10.1093/oso/9780198502777.001.0001 – volume: 35 start-page: 1079 year: 2018 ident: 10239_CR26 publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire doi: 10.1016/j.anihpc.2017.10.002 – volume: 212 start-page: 235 year: 2005 ident: 10239_CR4 publication-title: J. Different. Equ. doi: 10.1016/j.jde.2004.07.003 – volume: 379 start-page: 724 year: 2011 ident: 10239_CR37 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2011.02.003 – volume: 30 start-page: 367 year: 2013 ident: 10239_CR47 publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire doi: 10.1016/j.anihpc.2012.06.003 – volume: 24 start-page: 461 year: 2014 ident: 10239_CR39 publication-title: Adv. Math. Sci. Appl. – volume: 57 start-page: 1067 year: 2007 ident: 10239_CR11 publication-title: Czechoslovak Math. J. doi: 10.1007/s10587-007-0114-0 – volume: 31 start-page: 4851 year: 2018 ident: 10239_CR16 publication-title: Nonlinearity doi: 10.1088/1361-6544/aad52a – volume: 454 start-page: 2617 year: 1998 ident: 10239_CR38 publication-title: Proc. Roy. Soc. Lond. A doi: 10.1098/rspa.1998.0273 – volume: 78 start-page: 217 year: 2012 ident: 10239_CR46 publication-title: Asymptot. Anal. – ident: 10239_CR7 doi: 10.1007/978-1-4614-5975-0 – volume: 294 start-page: 88 year: 2021 ident: 10239_CR40 publication-title: J. Different. Equ. doi: 10.1016/j.jde.2021.05.045 – volume: 6 start-page: 815 year: 1996 ident: 10239_CR28 publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202596000341 – volume: 146 start-page: 65 year: 1986 ident: 10239_CR42 publication-title: Ann. Mat. Pura Appl. doi: 10.1007/BF01762360 – ident: 10239_CR45 – volume: 259 start-page: 3032 year: 2015 ident: 10239_CR29 publication-title: J. Different. Equ. doi: 10.1016/j.jde.2015.04.009 – volume: 287 start-page: 295 year: 2021 ident: 10239_CR20 publication-title: J. Different. Equ. doi: 10.1016/j.jde.2021.03.052 – volume: 83 start-page: 489 year: 2021 ident: 10239_CR44 publication-title: Appl. Math. Optim. doi: 10.1007/s00245-019-09555-4 – volume-title: The Navier-Stokes Equations year: 2001 ident: 10239_CR43 – ident: 10239_CR8 – volume: 54 start-page: 737 year: 2022 ident: 10239_CR27 publication-title: SIAM J. Math. Anal. doi: 10.1137/20M1376443 – volume: 386 start-page: 428 year: 2012 ident: 10239_CR10 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2011.08.008 – volume: 4 start-page: 653 year: 2011 ident: 10239_CR36 publication-title: Discrete Contin. Dyn. Syst. Ser. S – volume: 1 start-page: 260 year: 2016 ident: 10239_CR24 publication-title: AIMS Math. doi: 10.3934/Math.2016.3.318 – volume: 13 start-page: 733 year: 2023 ident: 10239_CR32 publication-title: Sci. Rep. doi: 10.1038/s41598-023-27630-3 – volume: 28 start-page: 1257 year: 2015 ident: 10239_CR23 publication-title: Nonlinearity doi: 10.1088/0951-7715/28/5/1257 |
SSID | ssj0002363 |
Score | 2.361955 |
Snippet | We consider a Cahn–Hilliard–Darcy system for an incompressible mixture of two fluids we already analyzed in [
9
]. In this system, the relative concentration... We consider a Cahn–Hilliard–Darcy system for an incompressible mixture of two fluids we already analyzed in [9]. In this system, the relative concentration... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 39 |
SubjectTerms | Applied mathematics Calculus of Variations and Optimal Control; Optimization Chemical potential Control Entropy Fluid flow Free energy Incompressible flow Kinematics Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Numerical and Computational Physics Optimization Simulation Systems Theory Theoretical Viscosity |
Title | A Nonlocal Cahn–Hilliard–Darcy System with Singular Potential, Degenerate Mobility, and Sources |
URI | https://link.springer.com/article/10.1007/s00245-025-10239-5 https://www.proquest.com/docview/3168933087 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELagXWBA_IpCqTyw0UjNj514TNOWCtQKqVQqU-TYDgwoQW0YuvEOvCFPwtlJC1QwsDiJEp2lyyX3-Xz3HUKX3NQzKtvi4Nwsj6rU4kkSWJrZW0rNd1Jm-Y7pcOrdzMisosnRtTAb-_ea7NPxdA2x5st0XGaRbVQntuvrNg0RjdZ_XcetuqYxAlPatCqQ-V3GTyf0hSw3NkONjxnso70KHOKwfJsHaEtlh2j3G2UgXI3WPKuLIyRCPM4z449wxJ-yj7f3oQmgzCWc9sCIl7jkJMc64IonIEPnneK7vNBpQvy5jXvq0VBPFwqPcpMqu2xjnkk8MXH9xTGaDvr30dCq2iZYAnx1AWPgCEaVk_iCCZ56gUoFC4QggXKV76aMSgA9iaSSSRcQYwprZO5wGVDAioq5J6iW5Zk6RdgGOyMdzhUDMSyB5Q-nCVEdCQIo80QDXa30GL-U7BjxmgfZaD0GrcdG6zFpoOZK1XH1pSxi3ThLB1UCv4HaK_V_3f5b2tn_Hj9HO462AJN000S1Yv6qLgBPFEkL1cNBtzvWx-uH237LGBaMUyf8BFlfxhw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIpCAQ9sNBLNw7XHqqUq0FZIbaVulmM7MKAENWHoxn_gH_JLODuPAoKBJUqU6CJdLr7P9_gOoUth-xl1yxHg3Byf6MgRYUgdw-ytlOE7yat8x2Qw8-_mwbxoCkvLavcyJWlX6qrZzWYJHTN-1dANMCdYRxsABqix5ZnbqdZf1yvmp7EAXt4iRavM7zK-u6MVxvyRFrXepr-LdgqYiDv5d91DazreR9tfyAPhalQxrqYHSHbwOImtZ8Jd8RR_vL0PbChloeC0B-a8xDk7OTahVzwBGaYCFT8kmSkYEs9N3NOPloQ603iU2KLZZROLWOGJjfCnh2jWv5l2B04xQMGR4LUzOFJXMqLdsC2ZFJFPdSQZlTKg2tNtL2JEAfwJFVFMeYAdI9gtC1coSgA1auYdoVqcxPoY4RZYXHAthGYghoWwERIkDPS1AgGE-bKOrko98pecJ4NXjMhW6xy0zq3WeVBHjVLVvPhnUm5GaJnwCm3XUbNU_-r239JO_vf4BdocTEdDPrwd35-iLddYgy3FaaBatnjVZ4AysvDcGtUnx93JOg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSAgOiFUUCvjAjVolmxsfq5SqLK0qlUq9RY7twCmp2nDojX_gD_kSxs7SguDAJUqUaBQ9TzKLZ94gdM1NP6OyCAfjRlyqYsKjyCea2VtKzXeSV_kOaX_iPky96VoXv6l2L7ck854GzdKUZK2ZjFtV45vZMSR6FKumHmDE20RbEKlYOvwKaFD9i22nmKXGPHgRixZtM7_L-G6aVv7mjy1SY3l6-2ivcBlxJ1_jA7ShkkO0u0YkCFeDin11cYREBw_TxFgpHPDX5PP9o2_SKnMJp11Q7SXOmcqxTsPiMcjQ1ah4lGoMQCObuKteDCF1pvAgNQW0yybmicRjk-1fHKNJ7-456JNimAIRYMEzOPq2YFTZUVswwWPXV7FgvhCerxzVdmJGJbhCkaSSSQf8yBgiZ25z6VPwIBVzTlAtSRN1irAF2ufdcq4YiGERBEWcRp66lSCAMlfU0U2JYzjLOTPCih3ZoB4C6qFBPfTqqFFCHRbfzyLU47R0qsVv11GzhH91-29pZ_97_Aptj7q98Ol--HiOdmytDKYqp4Fq2fxNXYDDkUWXRqe-AHWfzWA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Nonlocal+Cahn%E2%80%93Hilliard%E2%80%93Darcy+System+with+Singular+Potential%2C+Degenerate+Mobility%2C+and+Sources&rft.jtitle=Applied+mathematics+%26+optimization&rft.au=Cavaterra%2C+Cecilia&rft.au=Frigeri%2C+Sergio&rft.au=Grasselli%2C+Maurizio&rft.date=2025-04-01&rft.issn=0095-4616&rft.eissn=1432-0606&rft.volume=91&rft.issue=2&rft_id=info:doi/10.1007%2Fs00245-025-10239-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00245_025_10239_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0095-4616&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0095-4616&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0095-4616&client=summon |