A Nonlocal Cahn–Hilliard–Darcy System with Singular Potential, Degenerate Mobility, and Sources

We consider a Cahn–Hilliard–Darcy system for an incompressible mixture of two fluids we already analyzed in [ 9 ]. In this system, the relative concentration difference φ obeys a convective nonlocal Cahn–Hilliard equation with degenerate mobility and singular (e.g., logarithmic) potential, while the...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics & optimization Vol. 91; no. 2; p. 39
Main Authors Cavaterra, Cecilia, Frigeri, Sergio, Grasselli, Maurizio
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider a Cahn–Hilliard–Darcy system for an incompressible mixture of two fluids we already analyzed in [ 9 ]. In this system, the relative concentration difference φ obeys a convective nonlocal Cahn–Hilliard equation with degenerate mobility and singular (e.g., logarithmic) potential, while the volume averaged fluid velocity u is given by a Darcy’s law subject to the Korteweg force μ ∇ φ , where the chemical potential μ is defined by means of a nonlocal Helmholtz free energy. The kinematic viscosity η depends on φ . With respect to the quoted contribution, here we assume that the Darcy’s law is subject to gravity and to a given additional source. Moreover, we suppose that the Cahn–Hilliard equation and the chemical potential contain source terms. Our main goal is to establish the existence of two notions of weak solutions. The first, called “generalized” weak solution, is based a convenient splitting of μ so that the entropy derivative does not need to be integrable. The second is slightly stronger and allows to reconstruct μ and to prove the validity of a canonical energy identity. For this reason, the latter is called “natural” weak solution. The rigorous relation between the two notions of weak solution is also analyzed. The existence of a global attractor for generalized weak solutions and time independent sources is then demonstrated via the theory of generalized semiflows introduced by J.M. Ball.
AbstractList We consider a Cahn–Hilliard–Darcy system for an incompressible mixture of two fluids we already analyzed in [9]. In this system, the relative concentration difference $$\varphi $$ φ obeys a convective nonlocal Cahn–Hilliard equation with degenerate mobility and singular (e.g., logarithmic) potential, while the volume averaged fluid velocity $$\varvec{u}$$ u is given by a Darcy’s law subject to the Korteweg force $$\mu \nabla \varphi $$ μ ∇ φ , where the chemical potential $$\mu $$ μ is defined by means of a nonlocal Helmholtz free energy. The kinematic viscosity $$\eta $$ η depends on $$\varphi $$ φ . With respect to the quoted contribution, here we assume that the Darcy’s law is subject to gravity and to a given additional source. Moreover, we suppose that the Cahn–Hilliard equation and the chemical potential contain source terms. Our main goal is to establish the existence of two notions of weak solutions. The first, called “generalized” weak solution, is based a convenient splitting of $$\mu $$ μ so that the entropy derivative does not need to be integrable. The second is slightly stronger and allows to reconstruct $$\mu $$ μ and to prove the validity of a canonical energy identity. For this reason, the latter is called “natural” weak solution. The rigorous relation between the two notions of weak solution is also analyzed. The existence of a global attractor for generalized weak solutions and time independent sources is then demonstrated via the theory of generalized semiflows introduced by J.M. Ball.
We consider a Cahn–Hilliard–Darcy system for an incompressible mixture of two fluids we already analyzed in [ 9 ]. In this system, the relative concentration difference φ obeys a convective nonlocal Cahn–Hilliard equation with degenerate mobility and singular (e.g., logarithmic) potential, while the volume averaged fluid velocity u is given by a Darcy’s law subject to the Korteweg force μ ∇ φ , where the chemical potential μ is defined by means of a nonlocal Helmholtz free energy. The kinematic viscosity η depends on φ . With respect to the quoted contribution, here we assume that the Darcy’s law is subject to gravity and to a given additional source. Moreover, we suppose that the Cahn–Hilliard equation and the chemical potential contain source terms. Our main goal is to establish the existence of two notions of weak solutions. The first, called “generalized” weak solution, is based a convenient splitting of μ so that the entropy derivative does not need to be integrable. The second is slightly stronger and allows to reconstruct μ and to prove the validity of a canonical energy identity. For this reason, the latter is called “natural” weak solution. The rigorous relation between the two notions of weak solution is also analyzed. The existence of a global attractor for generalized weak solutions and time independent sources is then demonstrated via the theory of generalized semiflows introduced by J.M. Ball.
We consider a Cahn–Hilliard–Darcy system for an incompressible mixture of two fluids we already analyzed in [9]. In this system, the relative concentration difference φ obeys a convective nonlocal Cahn–Hilliard equation with degenerate mobility and singular (e.g., logarithmic) potential, while the volume averaged fluid velocity u is given by a Darcy’s law subject to the Korteweg force μ∇φ, where the chemical potential μ is defined by means of a nonlocal Helmholtz free energy. The kinematic viscosity η depends on φ. With respect to the quoted contribution, here we assume that the Darcy’s law is subject to gravity and to a given additional source. Moreover, we suppose that the Cahn–Hilliard equation and the chemical potential contain source terms. Our main goal is to establish the existence of two notions of weak solutions. The first, called “generalized” weak solution, is based a convenient splitting of μ so that the entropy derivative does not need to be integrable. The second is slightly stronger and allows to reconstruct μ and to prove the validity of a canonical energy identity. For this reason, the latter is called “natural” weak solution. The rigorous relation between the two notions of weak solution is also analyzed. The existence of a global attractor for generalized weak solutions and time independent sources is then demonstrated via the theory of generalized semiflows introduced by J.M. Ball.
ArticleNumber 39
Author Grasselli, Maurizio
Cavaterra, Cecilia
Frigeri, Sergio
Author_xml – sequence: 1
  givenname: Cecilia
  orcidid: 0000-0002-2754-7714
  surname: Cavaterra
  fullname: Cavaterra, Cecilia
  organization: Dipartimento di Matematica “F. Enriques”, Università degli Studi di Milano, Istituto di Matematica Applicata e Tecnologie Informatiche “Enrico Magenes”, CNR
– sequence: 2
  givenname: Sergio
  orcidid: 0000-0002-7582-5205
  surname: Frigeri
  fullname: Frigeri, Sergio
  organization: Dipartimento di Ingegneria (DENG), Universitá Telematica Pegaso
– sequence: 3
  givenname: Maurizio
  orcidid: 0000-0003-2521-2926
  surname: Grasselli
  fullname: Grasselli, Maurizio
  email: maurizio.grasselli@polimi.it
  organization: Dipartimento di Matematica, Politecnico di Milano
BookMark eNp9kE1OwzAQRi1UJNrCBVhZYtuAYyduvKxaoEjlRyqsLdeZtKlSu9iuUHbcgRtyEgxBYsdmZhbvmxm9AeoZawCh85RcpoSMrzwhNMsTQvMkJZSJJD9C_TRjNCGc8B7qEyLyJOMpP0ED77ck8oyzPtIT_GBNY7Vq8FRtzOf7x7xumlq5Mo4z5XSLl60PsMNvddjgZW3Wh0Y5_GQDmFCrZoRnsAYDTgXA93ZVN3VoR1iZEi_twWnwp-i4Uo2Hs98-RC8318_TebJ4vL2bThaJplkWYi2oFhzoaqyFVlVWQKVFoXVeAIMxqwQvOWWrkpeiZKQgFcm4oqosuEg5CDZEF93evbOvB_BBbuMDJp6ULOWFYDE0jhTtKO2s9w4quXf1TrlWpkR-y5SdTBllyh-ZMo8h1oV8hM0a3N_qf1Jf9UJ7Pw
Cites_doi 10.1142/S0218202511500138
10.1016/j.jde.2019.11.049
10.3934/dcdss.2022008
10.1103/PhysRevE.77.051129
10.1007/s10883-020-09490-6
10.1016/j.anihpc.2020.08.005
10.1007/s00021-019-0467-9
10.1016/j.jde.2021.01.012
10.1016/j.jde.2021.12.014
10.1007/s00021-021-00648-1
10.1051/cocv/2024041
10.1007/s00021-017-0334-5
10.1007/978-1-4612-1015-3
10.1007/s003329900037
10.1137/S0036141094267662
10.1063/1.1425844
10.1007/s00332-016-9292-y
10.4310/DPDE.2012.v9.n4.a1
10.1088/1361-6544/aaedd0
10.1088/0951-7715/24/6/001
10.1063/1.1425843
10.1093/oso/9780198502777.001.0001
10.1016/j.anihpc.2017.10.002
10.1016/j.jde.2004.07.003
10.1016/j.jmaa.2011.02.003
10.1016/j.anihpc.2012.06.003
10.1007/s10587-007-0114-0
10.1088/1361-6544/aad52a
10.1098/rspa.1998.0273
10.1007/978-1-4614-5975-0
10.1016/j.jde.2021.05.045
10.1142/S0218202596000341
10.1007/BF01762360
10.1016/j.jde.2015.04.009
10.1016/j.jde.2021.03.052
10.1007/s00245-019-09555-4
10.1137/20M1376443
10.1016/j.jmaa.2011.08.008
10.3934/Math.2016.3.318
10.1038/s41598-023-27630-3
10.1088/0951-7715/28/5/1257
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. Apr 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. Apr 2025
DBID C6C
AAYXX
CITATION
JQ2
DOI 10.1007/s00245-025-10239-5
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList CrossRef

ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1432-0606
ExternalDocumentID 10_1007_s00245_025_10239_5
GrantInformation_xml – fundername: Politecnico di Milano
GroupedDBID -Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHQJS
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
T9H
TH9
TN5
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WHG
WJK
WK8
YLTOR
Z45
ZL0
ZMTXR
ZWQNP
ZY4
~8M
~EX
AAYXX
ABFSG
ACSTC
ADXHL
AEZWR
AFHIU
AFOHR
AHWEU
AIXLP
AMVHM
ATHPR
CITATION
PHGZM
ABRTQ
JQ2
ID FETCH-LOGICAL-c244t-c282c96e2b7c9caf48efc98cc58e3e73f96d623bd6d9d3080f046a2ad86916e93
IEDL.DBID C6C
ISSN 0095-4616
IngestDate Fri Jul 25 19:22:54 EDT 2025
Tue Jul 01 05:16:52 EDT 2025
Thu Apr 17 08:21:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Degenerate mobility
Darcy’s law
Weak solutions
Nonlocal free energy
35Q35
76D27
76T06
37L30
Cahn–Hilliard equation
Singular potential
Global attractor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c244t-c282c96e2b7c9caf48efc98cc58e3e73f96d623bd6d9d3080f046a2ad86916e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7582-5205
0000-0002-2754-7714
0000-0003-2521-2926
OpenAccessLink https://doi.org/10.1007/s00245-025-10239-5
PQID 3168933087
PQPubID 47316
ParticipantIDs proquest_journals_3168933087
crossref_primary_10_1007_s00245_025_10239_5
springer_journals_10_1007_s00245_025_10239_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250400
2025-04-00
20250401
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 4
  year: 2025
  text: 20250400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Applied mathematics & optimization
PublicationTitleAbbrev Appl Math Optim
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References S Dharmatti (10239_CR14) 2021; 27
F Della Porta (10239_CR16) 2018; 31
J Lowengrub (10239_CR38) 1998; 454
J Simon (10239_CR42) 1986; 146
A Kulkarni (10239_CR32) 2023; 13
A Miranville (10239_CR40) 2021; 294
CM Elliott (10239_CR17) 1996; 27
H-G Lee (10239_CR34) 2002; 14
H Garcke (10239_CR24) 2016; 1
10239_CR45
S Frigeri (10239_CR23) 2015; 28
M Gurtin (10239_CR28) 1996; 6
G Schimperna (10239_CR41) 2022; 15
WP Ziemer (10239_CR48) 1989
J Sprekels (10239_CR44) 2021; 83
H Abels (10239_CR2) 2012; 22
A Giorgini (10239_CR27) 2022; 54
P Colli (10239_CR10) 2012; 386
M Conti (10239_CR12) 2020; 268
S Frigeri (10239_CR18) 2020; 38
E Khain (10239_CR30) 2008; 77
L Dedé (10239_CR15) 2018; 20
S Frigeri (10239_CR21) 2019; 32
10239_CR8
10239_CR7
10239_CR3
X Wang (10239_CR47) 2013; 30
J Bedrossian (10239_CR5) 2011; 24
A Giorgini (10239_CR25) 2020; 22
H-G Lee (10239_CR35) 2002; 14
KF Lam (10239_CR33) 2022; 312
S Frigeri (10239_CR22) 2012; 9
S-O Londen (10239_CR37) 2011; 379
C Cavaterra (10239_CR9) 2022; 24
S Frigeri (10239_CR19) 2016; 26
S Melchionna (10239_CR39) 2014; 24
J Jiang (10239_CR29) 2015; 259
M Abatangelo (10239_CR1) 2024; 30
P Colli (10239_CR11) 2007; 57
PW Bates (10239_CR4) 2005; 212
X Wang (10239_CR46) 2012; 78
S Frigeri (10239_CR20) 2021; 287
T Cazenave (10239_CR13) 1998
P Knopf (10239_CR31) 2021; 280
S-O Londen (10239_CR36) 2011; 4
A Giorgini (10239_CR26) 2018; 35
F Boyer (10239_CR6) 1999; 20
H Sohr (10239_CR43) 2001
References_xml – volume: 22
  start-page: 1150013
  year: 2012
  ident: 10239_CR2
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202511500138
– volume: 268
  start-page: 6350
  year: 2020
  ident: 10239_CR12
  publication-title: J. Different. Equ.
  doi: 10.1016/j.jde.2019.11.049
– volume: 15
  start-page: 2305
  year: 2022
  ident: 10239_CR41
  publication-title: Discrete Contin. Dyn. Syst. Ser. S
  doi: 10.3934/dcdss.2022008
– volume: 77
  year: 2008
  ident: 10239_CR30
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.77.051129
– volume: 27
  start-page: 221
  year: 2021
  ident: 10239_CR14
  publication-title: J. Dyn. Control Syst.
  doi: 10.1007/s10883-020-09490-6
– volume: 38
  start-page: 647
  year: 2020
  ident: 10239_CR18
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
  doi: 10.1016/j.anihpc.2020.08.005
– volume: 22
  start-page: 5
  year: 2020
  ident: 10239_CR25
  publication-title: J. Math. Fluid Mech.
  doi: 10.1007/s00021-019-0467-9
– volume: 280
  start-page: 236
  year: 2021
  ident: 10239_CR31
  publication-title: J. Different. Equ.
  doi: 10.1016/j.jde.2021.01.012
– volume: 312
  start-page: 237
  year: 2022
  ident: 10239_CR33
  publication-title: J. Different. Equ.
  doi: 10.1016/j.jde.2021.12.014
– volume: 24
  start-page: 13
  year: 2022
  ident: 10239_CR9
  publication-title: J. Math. Fluid Mech.
  doi: 10.1007/s00021-021-00648-1
– volume: 30
  start-page: 52
  year: 2024
  ident: 10239_CR1
  publication-title: ESAIM Control Optim. Calc. Var.
  doi: 10.1051/cocv/2024041
– volume: 20
  start-page: 531
  year: 2018
  ident: 10239_CR15
  publication-title: J. Math. Fluid Mech.
  doi: 10.1007/s00021-017-0334-5
– volume-title: Weakly Differentiable Functions
  year: 1989
  ident: 10239_CR48
  doi: 10.1007/978-1-4612-1015-3
– ident: 10239_CR3
  doi: 10.1007/s003329900037
– volume: 20
  start-page: 175
  year: 1999
  ident: 10239_CR6
  publication-title: Asymptot. Anal.
– volume: 27
  start-page: 404
  year: 1996
  ident: 10239_CR17
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/S0036141094267662
– volume: 14
  start-page: 514
  year: 2002
  ident: 10239_CR35
  publication-title: Phys. Fluids
  doi: 10.1063/1.1425844
– volume: 26
  start-page: 847
  year: 2016
  ident: 10239_CR19
  publication-title: J. Nonlinear Sci.
  doi: 10.1007/s00332-016-9292-y
– volume: 9
  start-page: 273
  year: 2012
  ident: 10239_CR22
  publication-title: Dyn. Partial Differ. Equ.
  doi: 10.4310/DPDE.2012.v9.n4.a1
– volume: 32
  start-page: 678
  year: 2019
  ident: 10239_CR21
  publication-title: Nonlinearity
  doi: 10.1088/1361-6544/aaedd0
– volume: 24
  start-page: 1683
  year: 2011
  ident: 10239_CR5
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/24/6/001
– volume: 14
  start-page: 492
  year: 2002
  ident: 10239_CR34
  publication-title: Phys. Fluids
  doi: 10.1063/1.1425843
– volume-title: An Introduction to Semilinear Evolution Equations
  year: 1998
  ident: 10239_CR13
  doi: 10.1093/oso/9780198502777.001.0001
– volume: 35
  start-page: 1079
  year: 2018
  ident: 10239_CR26
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
  doi: 10.1016/j.anihpc.2017.10.002
– volume: 212
  start-page: 235
  year: 2005
  ident: 10239_CR4
  publication-title: J. Different. Equ.
  doi: 10.1016/j.jde.2004.07.003
– volume: 379
  start-page: 724
  year: 2011
  ident: 10239_CR37
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2011.02.003
– volume: 30
  start-page: 367
  year: 2013
  ident: 10239_CR47
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
  doi: 10.1016/j.anihpc.2012.06.003
– volume: 24
  start-page: 461
  year: 2014
  ident: 10239_CR39
  publication-title: Adv. Math. Sci. Appl.
– volume: 57
  start-page: 1067
  year: 2007
  ident: 10239_CR11
  publication-title: Czechoslovak Math. J.
  doi: 10.1007/s10587-007-0114-0
– volume: 31
  start-page: 4851
  year: 2018
  ident: 10239_CR16
  publication-title: Nonlinearity
  doi: 10.1088/1361-6544/aad52a
– volume: 454
  start-page: 2617
  year: 1998
  ident: 10239_CR38
  publication-title: Proc. Roy. Soc. Lond. A
  doi: 10.1098/rspa.1998.0273
– volume: 78
  start-page: 217
  year: 2012
  ident: 10239_CR46
  publication-title: Asymptot. Anal.
– ident: 10239_CR7
  doi: 10.1007/978-1-4614-5975-0
– volume: 294
  start-page: 88
  year: 2021
  ident: 10239_CR40
  publication-title: J. Different. Equ.
  doi: 10.1016/j.jde.2021.05.045
– volume: 6
  start-page: 815
  year: 1996
  ident: 10239_CR28
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202596000341
– volume: 146
  start-page: 65
  year: 1986
  ident: 10239_CR42
  publication-title: Ann. Mat. Pura Appl.
  doi: 10.1007/BF01762360
– ident: 10239_CR45
– volume: 259
  start-page: 3032
  year: 2015
  ident: 10239_CR29
  publication-title: J. Different. Equ.
  doi: 10.1016/j.jde.2015.04.009
– volume: 287
  start-page: 295
  year: 2021
  ident: 10239_CR20
  publication-title: J. Different. Equ.
  doi: 10.1016/j.jde.2021.03.052
– volume: 83
  start-page: 489
  year: 2021
  ident: 10239_CR44
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s00245-019-09555-4
– volume-title: The Navier-Stokes Equations
  year: 2001
  ident: 10239_CR43
– ident: 10239_CR8
– volume: 54
  start-page: 737
  year: 2022
  ident: 10239_CR27
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/20M1376443
– volume: 386
  start-page: 428
  year: 2012
  ident: 10239_CR10
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2011.08.008
– volume: 4
  start-page: 653
  year: 2011
  ident: 10239_CR36
  publication-title: Discrete Contin. Dyn. Syst. Ser. S
– volume: 1
  start-page: 260
  year: 2016
  ident: 10239_CR24
  publication-title: AIMS Math.
  doi: 10.3934/Math.2016.3.318
– volume: 13
  start-page: 733
  year: 2023
  ident: 10239_CR32
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-27630-3
– volume: 28
  start-page: 1257
  year: 2015
  ident: 10239_CR23
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/28/5/1257
SSID ssj0002363
Score 2.361955
Snippet We consider a Cahn–Hilliard–Darcy system for an incompressible mixture of two fluids we already analyzed in [ 9 ]. In this system, the relative concentration...
We consider a Cahn–Hilliard–Darcy system for an incompressible mixture of two fluids we already analyzed in [9]. In this system, the relative concentration...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 39
SubjectTerms Applied mathematics
Calculus of Variations and Optimal Control; Optimization
Chemical potential
Control
Entropy
Fluid flow
Free energy
Incompressible flow
Kinematics
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Numerical and Computational Physics
Optimization
Simulation
Systems Theory
Theoretical
Viscosity
Title A Nonlocal Cahn–Hilliard–Darcy System with Singular Potential, Degenerate Mobility, and Sources
URI https://link.springer.com/article/10.1007/s00245-025-10239-5
https://www.proquest.com/docview/3168933087
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELagXWBA_IpCqTyw0UjNj514TNOWCtQKqVQqU-TYDgwoQW0YuvEOvCFPwtlJC1QwsDiJEp2lyyX3-Xz3HUKX3NQzKtvi4Nwsj6rU4kkSWJrZW0rNd1Jm-Y7pcOrdzMisosnRtTAb-_ea7NPxdA2x5st0XGaRbVQntuvrNg0RjdZ_XcetuqYxAlPatCqQ-V3GTyf0hSw3NkONjxnso70KHOKwfJsHaEtlh2j3G2UgXI3WPKuLIyRCPM4z449wxJ-yj7f3oQmgzCWc9sCIl7jkJMc64IonIEPnneK7vNBpQvy5jXvq0VBPFwqPcpMqu2xjnkk8MXH9xTGaDvr30dCq2iZYAnx1AWPgCEaVk_iCCZ56gUoFC4QggXKV76aMSgA9iaSSSRcQYwprZO5wGVDAioq5J6iW5Zk6RdgGOyMdzhUDMSyB5Q-nCVEdCQIo80QDXa30GL-U7BjxmgfZaD0GrcdG6zFpoOZK1XH1pSxi3ThLB1UCv4HaK_V_3f5b2tn_Hj9HO462AJN000S1Yv6qLgBPFEkL1cNBtzvWx-uH237LGBaMUyf8BFlfxhw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIpCAQ9sNBLNw7XHqqUq0FZIbaVulmM7MKAENWHoxn_gH_JLODuPAoKBJUqU6CJdLr7P9_gOoUth-xl1yxHg3Byf6MgRYUgdw-ytlOE7yat8x2Qw8-_mwbxoCkvLavcyJWlX6qrZzWYJHTN-1dANMCdYRxsABqix5ZnbqdZf1yvmp7EAXt4iRavM7zK-u6MVxvyRFrXepr-LdgqYiDv5d91DazreR9tfyAPhalQxrqYHSHbwOImtZ8Jd8RR_vL0PbChloeC0B-a8xDk7OTahVzwBGaYCFT8kmSkYEs9N3NOPloQ603iU2KLZZROLWOGJjfCnh2jWv5l2B04xQMGR4LUzOFJXMqLdsC2ZFJFPdSQZlTKg2tNtL2JEAfwJFVFMeYAdI9gtC1coSgA1auYdoVqcxPoY4RZYXHAthGYghoWwERIkDPS1AgGE-bKOrko98pecJ4NXjMhW6xy0zq3WeVBHjVLVvPhnUm5GaJnwCm3XUbNU_-r239JO_vf4BdocTEdDPrwd35-iLddYgy3FaaBatnjVZ4AysvDcGtUnx93JOg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSAgOiFUUCvjAjVolmxsfq5SqLK0qlUq9RY7twCmp2nDojX_gD_kSxs7SguDAJUqUaBQ9TzKLZ94gdM1NP6OyCAfjRlyqYsKjyCea2VtKzXeSV_kOaX_iPky96VoXv6l2L7ck854GzdKUZK2ZjFtV45vZMSR6FKumHmDE20RbEKlYOvwKaFD9i22nmKXGPHgRixZtM7_L-G6aVv7mjy1SY3l6-2ivcBlxJ1_jA7ShkkO0u0YkCFeDin11cYREBw_TxFgpHPDX5PP9o2_SKnMJp11Q7SXOmcqxTsPiMcjQ1ah4lGoMQCObuKteDCF1pvAgNQW0yybmicRjk-1fHKNJ7-456JNimAIRYMEzOPq2YFTZUVswwWPXV7FgvhCerxzVdmJGJbhCkaSSSQf8yBgiZ25z6VPwIBVzTlAtSRN1irAF2ufdcq4YiGERBEWcRp66lSCAMlfU0U2JYzjLOTPCih3ZoB4C6qFBPfTqqFFCHRbfzyLU47R0qsVv11GzhH91-29pZ_97_Aptj7q98Ol--HiOdmytDKYqp4Fq2fxNXYDDkUWXRqe-AHWfzWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Nonlocal+Cahn%E2%80%93Hilliard%E2%80%93Darcy+System+with+Singular+Potential%2C+Degenerate+Mobility%2C+and+Sources&rft.jtitle=Applied+mathematics+%26+optimization&rft.au=Cavaterra%2C+Cecilia&rft.au=Frigeri%2C+Sergio&rft.au=Grasselli%2C+Maurizio&rft.date=2025-04-01&rft.issn=0095-4616&rft.eissn=1432-0606&rft.volume=91&rft.issue=2&rft_id=info:doi/10.1007%2Fs00245-025-10239-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00245_025_10239_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0095-4616&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0095-4616&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0095-4616&client=summon