Asymmetric distributed trust

Quorum systems are a key abstraction in distributed fault-tolerant computing for capturing trust assumptions. They can be found at the core of many algorithms for implementing reliable broadcasts, shared memory, consensus and other problems. This paper introduces asymmetric Byzantine quorum systems...

Full description

Saved in:
Bibliographic Details
Published inDistributed computing Vol. 37; no. 3; pp. 247 - 277
Main Authors Alpos, Orestis, Cachin, Christian, Tackmann, Björn, Zanolini, Luca
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Quorum systems are a key abstraction in distributed fault-tolerant computing for capturing trust assumptions. They can be found at the core of many algorithms for implementing reliable broadcasts, shared memory, consensus and other problems. This paper introduces asymmetric Byzantine quorum systems that model subjective trust. Every process is free to choose which combinations of other processes it trusts and which ones it considers faulty. Asymmetric quorum systems strictly generalize standard Byzantine quorum systems, which have only one global trust assumption for all processes. This work also presents protocols that implement abstractions of shared memory, broadcast primitives, and a consensus protocol among processes prone to Byzantine faults and asymmetric trust. The model and protocols pave the way for realizing more elaborate algorithms with asymmetric trust.
ISSN:0178-2770
1432-0452
DOI:10.1007/s00446-024-00469-1