Hybrid-Memcached: A Novel Approach for Memcached Persistence Optimization With Hybrid Memory

Memcached is a widely adopted, high-performance, in-memory key-value object caching system utilized in data centers. Nonetheless, its data is stored in volatile DRAM, making the cached data susceptible to loss during system shutdowns. Consequently, cold restarts experience significant delays. Persis...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on computers Vol. 73; no. 7; pp. 1866 - 1874
Main Authors Jiang, Zhang, Li, Xianduo, Peng, Tianxiang, Li, Haoran, Hong, Jingxuan, Zhang, Jin, Gong, Xiaoli
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Memcached is a widely adopted, high-performance, in-memory key-value object caching system utilized in data centers. Nonetheless, its data is stored in volatile DRAM, making the cached data susceptible to loss during system shutdowns. Consequently, cold restarts experience significant delays. Persistent memory is a byte-addressable, large-capacity, and non-volatility storage media, which can be employed to avoid the cold restart problem. However, deploying Memcached on persistent memory requires consideration of issues such as write endurance, asymmetric read/write latency and bandwidth, and write granularity of persistent memory. In this paper, we propose Hybrid-Memcached, an optimized Memcached framework based on a hybrid combination of DRAM and persistent memory. Hybrid-Memcached includes three key components: (1) a DRAM-based data aggregation buffer to avoid multiple fine-grained writes, which extends the write endurance of persistent memory, (2) a data-object alignment mechanism to avoid write amplification, and (3) a non-temporal store instruction-based writing strategy to improve the bandwidth utilization. We have implemented Hybrid-Memcached on the Intel Optane persistent memory. Several micros-benchmarks are designed to evaluate Hybrid-Memcached by varying read/write ratios, access distributions, and key-value item sizes. Additionally, we evaluated it with the YCSB benchmark, showing a 21.2% performance improvement for fully write-intensive workloads and 11.8% for read-write balanced workloads.
ISSN:0018-9340
1557-9956
DOI:10.1109/TC.2024.3385279