Use of Light Sensor and Focused Local Atrial Electrogram Recordings for the Monitoring of Thermal Injury to the Esophagus and Lungs During Laser Catheter Ablation of the Posterior Atrial Walls: Preclinical In Vitro Porcine and In Vivo Canine Experimental Studies

During the catheter ablation of atrial fibrillation, thermal damages to the esophagus may have deleterious effects. The use of the SensoLas light sensor (SLLS; LasCor GmbH, Taufkirchen, Germany) and focused local atrial electrograms (LEGs) were tested as means for the assessment of thermal effects o...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of innovations in cardiac rhythm management (Print) Vol. 10; no. 7; pp. 3723 - 3731
Main Authors Weber, Helmut P, Schaur, Peter, Sagerer-Gerhardt, Michaela
Format Journal Article
LanguageEnglish
Published United States MediaSphere Medical 01.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:During the catheter ablation of atrial fibrillation, thermal damages to the esophagus may have deleterious effects. The use of the SensoLas light sensor (SLLS; LasCor GmbH, Taufkirchen, Germany) and focused local atrial electrograms (LEGs) were tested as means for the assessment of thermal effects on the esophagus during laser catheter ablation. A total of 32 transcatheter in vitro and in vivo 1064-nm laser impacts were aimed at porcine (n = 16) and canine (n = 16) atrial endocardia. Photons scattering through the atrial and esophageal walls were captured by the SLLS, transmitted via an optical fiber to a diode, and converted to power displayed on a monitor. The laser was stopped automatically when the power measurement reached values beyond the preset upper limit. During in vivo laser applications, bipolar LEGs were recorded via the miniature electrodes of the laser catheter. Thermal damage to the esophagus was avoided when the power measurement was limited to 150 μW or less and the diode current was 60 μA or less, regardless of the energy setting used and regardless of the thicknesses of the atrial and esophageal walls. Laser energy applied for eight seconds to 13 seconds (average: 10 seconds) abolished the electrical potentials permanently. In conclusion, the control of laser light via the SLLS and of atrial potential amplitudes in the LEGs can prevent thermal esophageal and lung injury during laser catheter ablation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Mr. Schaur is an employee of Hamamatsu Photonics. The other authors report no conflicts of interest for the published content. This study was financially supported in part by LasCor GmbH and Hamamatsu Photonics.
ISSN:2156-3977
2156-3993
DOI:10.19102/icrm.2019.100703