Parallel information processing by a reservoir computing system based on a VCSEL subject to double optical feedback and optical injection

In this work, we propose a scheme of reservoir computing (RC) for processing a Santa-Fe time series prediction task and a signal classification task in parallel, and the performances of the RC have been numerically investigated. For this scheme, a vertical-cavity surface-emitting laser (VCSEL) simul...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 27; no. 18; p. 26070
Main Authors Tan, XiangSheng, Hou, YuShuang, Wu, ZhengMao, Xia, GuangQiong
Format Journal Article
LanguageEnglish
Published United States 02.09.2019
Online AccessGet full text

Cover

Loading…
Abstract In this work, we propose a scheme of reservoir computing (RC) for processing a Santa-Fe time series prediction task and a signal classification task in parallel, and the performances of the RC have been numerically investigated. For this scheme, a vertical-cavity surface-emitting laser (VCSEL) simultaneously subject to double optical feedback and optical injection is utilized as a nonlinear node, and the parallel information processing of the RC system is implemented based on the dynamical responses of X polarization component (X-PC) and Y polarization component (Y-PC) in the VCSEL. Considering that two different feedback frames (polarization-preserved optical feedback (PP-OF) or polarization-rotated optical feedback (PR-OF)) may be adopted in two feedback loops, four feedback combination cases are numerically analyzed. The simulated results show that the parallel processing ability of the proposed RC system depends on the feedback frames adopted in two loops. After comprehensively evaluating the parallel processing performances of the two tasks under different feedback combinations, the best parallel processing performance can be achieved by adopting PP-OFs in both two feedback loops. Under some optimized operation parameters, this proposed RC system can realize the lowest prediction error of 0.0289 and the lowest signal classification error of 2.78 × 10 .
AbstractList In this work, we propose a scheme of reservoir computing (RC) for processing a Santa-Fe time series prediction task and a signal classification task in parallel, and the performances of the RC have been numerically investigated. For this scheme, a vertical-cavity surface-emitting laser (VCSEL) simultaneously subject to double optical feedback and optical injection is utilized as a nonlinear node, and the parallel information processing of the RC system is implemented based on the dynamical responses of X polarization component (X-PC) and Y polarization component (Y-PC) in the VCSEL. Considering that two different feedback frames (polarization-preserved optical feedback (PP-OF) or polarization-rotated optical feedback (PR-OF)) may be adopted in two feedback loops, four feedback combination cases are numerically analyzed. The simulated results show that the parallel processing ability of the proposed RC system depends on the feedback frames adopted in two loops. After comprehensively evaluating the parallel processing performances of the two tasks under different feedback combinations, the best parallel processing performance can be achieved by adopting PP-OFs in both two feedback loops. Under some optimized operation parameters, this proposed RC system can realize the lowest prediction error of 0.0289 and the lowest signal classification error of 2.78 × 10-5.In this work, we propose a scheme of reservoir computing (RC) for processing a Santa-Fe time series prediction task and a signal classification task in parallel, and the performances of the RC have been numerically investigated. For this scheme, a vertical-cavity surface-emitting laser (VCSEL) simultaneously subject to double optical feedback and optical injection is utilized as a nonlinear node, and the parallel information processing of the RC system is implemented based on the dynamical responses of X polarization component (X-PC) and Y polarization component (Y-PC) in the VCSEL. Considering that two different feedback frames (polarization-preserved optical feedback (PP-OF) or polarization-rotated optical feedback (PR-OF)) may be adopted in two feedback loops, four feedback combination cases are numerically analyzed. The simulated results show that the parallel processing ability of the proposed RC system depends on the feedback frames adopted in two loops. After comprehensively evaluating the parallel processing performances of the two tasks under different feedback combinations, the best parallel processing performance can be achieved by adopting PP-OFs in both two feedback loops. Under some optimized operation parameters, this proposed RC system can realize the lowest prediction error of 0.0289 and the lowest signal classification error of 2.78 × 10-5.
In this work, we propose a scheme of reservoir computing (RC) for processing a Santa-Fe time series prediction task and a signal classification task in parallel, and the performances of the RC have been numerically investigated. For this scheme, a vertical-cavity surface-emitting laser (VCSEL) simultaneously subject to double optical feedback and optical injection is utilized as a nonlinear node, and the parallel information processing of the RC system is implemented based on the dynamical responses of X polarization component (X-PC) and Y polarization component (Y-PC) in the VCSEL. Considering that two different feedback frames (polarization-preserved optical feedback (PP-OF) or polarization-rotated optical feedback (PR-OF)) may be adopted in two feedback loops, four feedback combination cases are numerically analyzed. The simulated results show that the parallel processing ability of the proposed RC system depends on the feedback frames adopted in two loops. After comprehensively evaluating the parallel processing performances of the two tasks under different feedback combinations, the best parallel processing performance can be achieved by adopting PP-OFs in both two feedback loops. Under some optimized operation parameters, this proposed RC system can realize the lowest prediction error of 0.0289 and the lowest signal classification error of 2.78 × 10 .
Author Tan, XiangSheng
Wu, ZhengMao
Hou, YuShuang
Xia, GuangQiong
Author_xml – sequence: 1
  givenname: XiangSheng
  surname: Tan
  fullname: Tan, XiangSheng
– sequence: 2
  givenname: YuShuang
  surname: Hou
  fullname: Hou, YuShuang
– sequence: 3
  givenname: ZhengMao
  orcidid: 0000-0002-4331-8743
  surname: Wu
  fullname: Wu, ZhengMao
– sequence: 4
  givenname: GuangQiong
  orcidid: 0000-0002-3920-6749
  surname: Xia
  fullname: Xia, GuangQiong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31510467$$D View this record in MEDLINE/PubMed
BookMark eNptkU1P4zAQhi3ECii7N87IRw60azuOnRxRVT6kSl1pF66RPybI4MTFdpD6E_jXpBQQQnua0cwzM5r3naD9PvSA0AklM1oI_nu1mDE5I0wQSfbQESU1n3JSyf0v-SGapPRACOWylgfosKAlJVzII_TyR0XlPXjs-jbETmUXeryOwUBKrr_HeoMVjpAgPgcXsQndesjbRtqkDB3WKoHF44zCd_O_iyVOg34Ak3EO2IZBe8BhnZ1RHrcAVivziFVvP4uu39Lj0Z_oR6t8gl_v8RjdXi7-za-ny9XVzfxiOTWMczIVStaiqmklRAEFY2DLVttKS90SzUEoYaSirK0Np4JaYUvTUmYtIbqypSTFMTrb7R2ffBog5aZzyYD3qocwpIaxqi5lwctiRE_f0UF3YJt1dJ2Km-ZDvhE43wEmhpQitJ8IJc3WnWa1aJhsdu6MOPuGG5ffFM9ROf__oVdC_5NR
CitedBy_id crossref_primary_10_1364_AO_477362
crossref_primary_10_1109_JPHOT_2025_3528019
crossref_primary_10_1364_PRJ_409114
crossref_primary_10_1364_AO_454422
crossref_primary_10_1364_OME_451585
crossref_primary_10_1364_OPTCON_453196
crossref_primary_10_1109_JLT_2024_3357745
crossref_primary_10_1364_OE_495697
crossref_primary_10_1016_j_optcom_2021_127120
crossref_primary_10_1109_JQE_2024_3416990
crossref_primary_10_1364_OE_491953
crossref_primary_10_1109_JLT_2024_3422327
crossref_primary_10_1364_OE_470857
crossref_primary_10_1364_OE_491910
crossref_primary_10_1364_OE_500065
crossref_primary_10_1109_ACCESS_2020_3017636
crossref_primary_10_3390_e22020231
crossref_primary_10_1016_j_optlastec_2022_108994
crossref_primary_10_1364_OE_527428
crossref_primary_10_1016_j_optlastec_2023_109200
crossref_primary_10_1109_JSTQE_2022_3216628
crossref_primary_10_1364_OE_464804
crossref_primary_10_1155_2022_2859567
crossref_primary_10_1364_AO_475139
crossref_primary_10_1364_OE_387277
crossref_primary_10_1364_AO_398580
crossref_primary_10_1109_JPHOT_2021_3115598
crossref_primary_10_7498_aps_70_20210355
crossref_primary_10_1007_s00340_024_08217_w
crossref_primary_10_1109_JSTQE_2024_3480455
crossref_primary_10_1364_OE_471213
crossref_primary_10_1109_JLT_2024_3517145
crossref_primary_10_1063_1_5120788
crossref_primary_10_1109_JQE_2022_3173522
crossref_primary_10_2139_ssrn_4167500
crossref_primary_10_1038_s42005_024_01858_5
crossref_primary_10_1364_AO_430705
Cites_doi 10.1007/s11071-018-4057-9
10.1080/08898480890513580
10.1063/1.5042342
10.1038/srep00287
10.1364/OPTICA.2.000438
10.1364/OE.26.005777
10.1109/JSTQE.2013.2241738
10.1364/OE.21.000012
10.1364/OE.20.022783
10.1109/3.572151
10.1364/OE.20.003241
10.1364/OL.43.004497
10.1364/OE.22.008672
10.1364/OE.24.001238
10.1364/OE.26.010211
10.1038/ncomms2368
10.1364/OL.42.000375
10.1126/science.1091277
10.1364/OE.17.020124
10.1364/OL.32.001629
10.1038/ncomms1476
10.1103/PhysRevLett.108.244101
10.1364/OE.24.008679
10.1109/TNNLS.2015.2404346
10.1177/107754603030750
10.1109/JLT.2011.2157460
10.1364/OE.22.010868
10.1109/JLT.2006.886064
10.1016/j.neunet.2007.04.003
10.1177/107754630100700807
10.1364/OL.44.000049
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1364/OE.27.026070
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 31510467
10_1364_OE_27_026070
Genre Journal Article
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
EJD
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
NPM
7X8
ID FETCH-LOGICAL-c2440-6a7968918663e322ed5fbd8b7bf0b4e6a6c7a12f9c4161d6d5cf12dd00b8d5703
ISSN 1094-4087
IngestDate Fri Jul 11 04:52:14 EDT 2025
Thu Apr 03 07:04:16 EDT 2025
Tue Jul 01 04:04:43 EDT 2025
Thu Apr 24 22:53:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2440-6a7968918663e322ed5fbd8b7bf0b4e6a6c7a12f9c4161d6d5cf12dd00b8d5703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3920-6749
0000-0002-4331-8743
OpenAccessLink https://doi.org/10.1364/oe.27.026070
PMID 31510467
PQID 2289573453
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2289573453
pubmed_primary_31510467
crossref_primary_10_1364_OE_27_026070
crossref_citationtrail_10_1364_OE_27_026070
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-02
2019-Sep-02
20190902
PublicationDateYYYYMMDD 2019-09-02
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Optics express
PublicationTitleAlternate Opt Express
PublicationYear 2019
References Nguimdo (oe-27-18-26070-R20) 2014; 22
Nguimdo (oe-27-18-26070-R27) 2019; 44
Verstraeten (oe-27-18-26070-R9) 2007; 20
Hicke (oe-27-18-26070-R19) 2013; 19
Koyama (oe-27-18-26070-R31) 2006; 24
Boucekkine (oe-27-18-26070-R2) 2004; 11
Vinckier (oe-27-18-26070-R17) 2015; 2
Nguimdo (oe-27-18-26070-R21) 2016; 24
Henry (oe-27-18-26070-R3) 2001; 7
Paquot (oe-27-18-26070-R12) 2012; 2
Duport (oe-27-18-26070-R15) 2012; 20
Xiang (oe-27-18-26070-R30) 2011; 29
Nakayama (oe-27-18-26070-R22) 2016; 24
Wu (oe-27-18-26070-R34) 2009; 17
Brunner (oe-27-18-26070-R7) 2018; 124
Hou (oe-27-18-26070-R26) 2018; 26
Dejonckheere (oe-27-18-26070-R16) 2014; 22
Martin-Regalado (oe-27-18-26070-R32) 1997; 33
Soriano (oe-27-18-26070-R14) 2013; 21
Jaeger (oe-27-18-26070-R8) 2004; 304
Masoud (oe-27-18-26070-R4) 2003; 9
Nguimdo (oe-27-18-26070-R25) 2017; 42
Appeltant (oe-27-18-26070-R10) 2011; 2
Nguimdo (oe-27-18-26070-R24) 2015; 26
Brunner (oe-27-18-26070-R18) 2013; 4
Vatin (oe-27-18-26070-R29) 2018; 43
Li (oe-27-18-26070-R5) 2018; 92
Kuriki (oe-27-18-26070-R23) 2018; 26
Larger (oe-27-18-26070-R11) 2012; 20
Gatare (oe-27-18-26070-R33) 2007; 32
Martinenghi (oe-27-18-26070-R13) 2012; 108
References_xml – volume: 92
  start-page: 315
  year: 2018
  ident: oe-27-18-26070-R5
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-018-4057-9
– volume: 11
  start-page: 151
  year: 2004
  ident: oe-27-18-26070-R2
  publication-title: Math. Popul. Stud.
  doi: 10.1080/08898480890513580
– volume: 124
  start-page: 152004
  year: 2018
  ident: oe-27-18-26070-R7
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5042342
– volume: 2
  start-page: 287
  year: 2012
  ident: oe-27-18-26070-R12
  publication-title: Sci. Rep.
  doi: 10.1038/srep00287
– volume: 2
  start-page: 438
  year: 2015
  ident: oe-27-18-26070-R17
  publication-title: Optica
  doi: 10.1364/OPTICA.2.000438
– volume: 26
  start-page: 5777
  year: 2018
  ident: oe-27-18-26070-R23
  publication-title: Opt. Express
  doi: 10.1364/OE.26.005777
– volume: 19
  start-page: 1501610
  year: 2013
  ident: oe-27-18-26070-R19
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2013.2241738
– volume: 21
  start-page: 12
  year: 2013
  ident: oe-27-18-26070-R14
  publication-title: Opt. Express
  doi: 10.1364/OE.21.000012
– volume: 20
  start-page: 22783
  year: 2012
  ident: oe-27-18-26070-R15
  publication-title: Opt. Express
  doi: 10.1364/OE.20.022783
– volume: 33
  start-page: 765
  year: 1997
  ident: oe-27-18-26070-R32
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/3.572151
– volume: 20
  start-page: 3241
  year: 2012
  ident: oe-27-18-26070-R11
  publication-title: Opt. Express
  doi: 10.1364/OE.20.003241
– volume: 43
  start-page: 4497
  year: 2018
  ident: oe-27-18-26070-R29
  publication-title: Opt. Lett.
  doi: 10.1364/OL.43.004497
– volume: 22
  start-page: 8672
  year: 2014
  ident: oe-27-18-26070-R20
  publication-title: Opt. Express
  doi: 10.1364/OE.22.008672
– volume: 24
  start-page: 1238
  year: 2016
  ident: oe-27-18-26070-R21
  publication-title: Opt. Express
  doi: 10.1364/OE.24.001238
– volume: 26
  start-page: 10211
  year: 2018
  ident: oe-27-18-26070-R26
  publication-title: Opt. Express
  doi: 10.1364/OE.26.010211
– volume: 4
  start-page: 1364
  year: 2013
  ident: oe-27-18-26070-R18
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2368
– volume: 42
  start-page: 375
  year: 2017
  ident: oe-27-18-26070-R25
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.000375
– volume: 304
  start-page: 78
  year: 2004
  ident: oe-27-18-26070-R8
  publication-title: Science
  doi: 10.1126/science.1091277
– volume: 17
  start-page: 20124
  year: 2009
  ident: oe-27-18-26070-R34
  publication-title: Opt. Express
  doi: 10.1364/OE.17.020124
– volume: 32
  start-page: 1629
  year: 2007
  ident: oe-27-18-26070-R33
  publication-title: Opt. Lett.
  doi: 10.1364/OL.32.001629
– volume: 2
  start-page: 468
  year: 2011
  ident: oe-27-18-26070-R10
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1476
– volume: 108
  start-page: 244101
  year: 2012
  ident: oe-27-18-26070-R13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.244101
– volume: 24
  start-page: 8679
  year: 2016
  ident: oe-27-18-26070-R22
  publication-title: Opt. Express
  doi: 10.1364/OE.24.008679
– volume: 26
  start-page: 3301
  year: 2015
  ident: oe-27-18-26070-R24
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2404346
– volume: 9
  start-page: 257
  year: 2003
  ident: oe-27-18-26070-R4
  publication-title: J. Vib. Control
  doi: 10.1177/107754603030750
– volume: 29
  start-page: 2173
  year: 2011
  ident: oe-27-18-26070-R30
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2011.2157460
– volume: 22
  start-page: 10868
  year: 2014
  ident: oe-27-18-26070-R16
  publication-title: Opt. Express
  doi: 10.1364/OE.22.010868
– volume: 24
  start-page: 4502
  year: 2006
  ident: oe-27-18-26070-R31
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2006.886064
– volume: 20
  start-page: 391
  year: 2007
  ident: oe-27-18-26070-R9
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2007.04.003
– volume: 7
  start-page: 1253
  year: 2001
  ident: oe-27-18-26070-R3
  publication-title: J. Vib. Control
  doi: 10.1177/107754630100700807
– volume: 44
  start-page: 49
  year: 2019
  ident: oe-27-18-26070-R27
  publication-title: Opt. Lett.
  doi: 10.1364/OL.44.000049
SSID ssj0014797
Score 2.4701252
Snippet In this work, we propose a scheme of reservoir computing (RC) for processing a Santa-Fe time series prediction task and a signal classification task in...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 26070
Title Parallel information processing by a reservoir computing system based on a VCSEL subject to double optical feedback and optical injection
URI https://www.ncbi.nlm.nih.gov/pubmed/31510467
https://www.proquest.com/docview/2289573453
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKEBIXxPfKx2QkOEUpSRw7yRFNhQlRCuoGFZfIsZ1tgJKqbRBw4M7_wB_Ls524GXTS4BJVT3Zc9f3q9_0eQo8zxWhBKfVTQZkfZyTzU0WFT4gkZSaJSE0Ef_KaHRzFL-d0Phj86mUtNetiJL5vrSv5H64CDfiqq2T_gbPupUCAz8BfeAKH4XkhHr_hSz0KRbfNcEWI3sKm_msXAKiW3NP1Rcsv9enSpI83Js3Z9m_2tAiTOlzAvXf7s_Erb9UU2i-jFVJZN7qoql60RY4g5QouPplgQ0c8rT6aTK6qr-JOF6bzs_q6cNkdxjNgrrc5oPF4dqJaeWnydhsjBprZScM35PeG-kGvnPC6o85tau8LvfItnHvcd1qENiur58cMwaoE07WVtWoLrb2cbeOADoRp_6plgR058pcQICwGzk3HoygZBW7Z2V7bf8hAl5loAnwszqfjPEpyu_sSuhyBEaLnY0x-jF2MKk7s6J7ua7dlFbD7af_sswrPOVaM0WYOr6NrrRmCn1lM3UADVd1EV0w6sFjdQj87ZOEesvAGWbj4hjl2yMIOWdgiCxtkYdjDsUEWbpGF1zW2yMItiHCHLAzIckSHrNvo6Pn4cP_Ab4d2-CLSeQKMJxlLM91HkSiQFkrSspBpkRRlUMSKcSYSHkZlJrRpLZmkogwjKYOgSKVuB3cH7VR1pXYRTnnAAqEru0vYGYecgjFPSAJKuoxUKYfI637ZXLQd7fVglc_5Ni4O0RO3emE7uZyz7lHHpByuWh0_45Wqm1UeRWlGExJTMkR3LffcmwhozgEoHfcueMp9dHXzv3iAdtbLRj0E9XZd7Bm30J7B2m9SY6fh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+information+processing+by+a+reservoir+computing+system+based+on+a+VCSEL+subject+to+double+optical+feedback+and+optical+injection&rft.jtitle=Optics+express&rft.au=Tan%2C+XiangSheng&rft.au=Hou%2C+YuShuang&rft.au=Wu%2C+ZhengMao&rft.au=Xia%2C+GuangQiong&rft.date=2019-09-02&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=27&rft.issue=18&rft.spage=26070&rft_id=info:doi/10.1364%2FOE.27.026070&rft.externalDBID=n%2Fa&rft.externalDocID=10_1364_OE_27_026070
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon