Parallel information processing by a reservoir computing system based on a VCSEL subject to double optical feedback and optical injection

In this work, we propose a scheme of reservoir computing (RC) for processing a Santa-Fe time series prediction task and a signal classification task in parallel, and the performances of the RC have been numerically investigated. For this scheme, a vertical-cavity surface-emitting laser (VCSEL) simul...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 27; no. 18; p. 26070
Main Authors Tan, XiangSheng, Hou, YuShuang, Wu, ZhengMao, Xia, GuangQiong
Format Journal Article
LanguageEnglish
Published United States 02.09.2019
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this work, we propose a scheme of reservoir computing (RC) for processing a Santa-Fe time series prediction task and a signal classification task in parallel, and the performances of the RC have been numerically investigated. For this scheme, a vertical-cavity surface-emitting laser (VCSEL) simultaneously subject to double optical feedback and optical injection is utilized as a nonlinear node, and the parallel information processing of the RC system is implemented based on the dynamical responses of X polarization component (X-PC) and Y polarization component (Y-PC) in the VCSEL. Considering that two different feedback frames (polarization-preserved optical feedback (PP-OF) or polarization-rotated optical feedback (PR-OF)) may be adopted in two feedback loops, four feedback combination cases are numerically analyzed. The simulated results show that the parallel processing ability of the proposed RC system depends on the feedback frames adopted in two loops. After comprehensively evaluating the parallel processing performances of the two tasks under different feedback combinations, the best parallel processing performance can be achieved by adopting PP-OFs in both two feedback loops. Under some optimized operation parameters, this proposed RC system can realize the lowest prediction error of 0.0289 and the lowest signal classification error of 2.78 × 10 .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.27.026070