Robust functional logistic regression

Abstract Functional logistic regression is a popular model to capture a linear relationship between binary response and functional predictor variables. However, many methods used for parameter estimation in functional logistic regression are sensitive to outliers, which may lead to inaccurate parame...

Full description

Saved in:
Bibliographic Details
Published inAdvances in data analysis and classification
Main Authors Akturk, Berkay, Beyaztas, Ufuk, Shang, Han Lin, Mandal, Abhijit
Format Journal Article
LanguageEnglish
Published 12.02.2024
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Functional logistic regression is a popular model to capture a linear relationship between binary response and functional predictor variables. However, many methods used for parameter estimation in functional logistic regression are sensitive to outliers, which may lead to inaccurate parameter estimates and inferior classification accuracy. We propose a robust estimation procedure for functional logistic regression, in which the observations of the functional predictor are projected onto a set of finite-dimensional subspaces via robust functional principal component analysis. This dimension-reduction step reduces the outlying effects in the functional predictor. The logistic regression coefficient is estimated using an M-type estimator based on binary response and robust principal component scores. In doing so, we provide robust estimates by minimizing the effects of outliers in the binary response and functional predictor variables. Via a series of Monte-Carlo simulations and using hand radiograph data, we examine the parameter estimation and classification accuracy for the response variable. We find that the robust procedure outperforms some existing robust and non-robust methods when outliers are present, while producing competitive results when outliers are absent. In addition, the proposed method is computationally more efficient than some existing robust alternatives.
ISSN:1862-5347
1862-5355
DOI:10.1007/s11634-023-00577-z