Effects of growth hormone on the in vitro maturation of fetal islets

To study the effects of growth hormone (GH) on the in vitro maturation of fetal islets, the fetal islets were cultured for 7 days in RPMI 1640 containing 10% fetal bovine serum and 11.1 mM glucose with or without GH. Culture with 1 microgram/ml of bovine GH increased the DNA content of the islets an...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Society for Experimental Biology and Medicine Vol. 177; no. 1; p. 69
Main Authors Dudek, R W, Kawabe, T, Brinn, J E, Poole, M C, Morgan, C R
Format Journal Article
LanguageEnglish
Published United States 01.10.1984
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:To study the effects of growth hormone (GH) on the in vitro maturation of fetal islets, the fetal islets were cultured for 7 days in RPMI 1640 containing 10% fetal bovine serum and 11.1 mM glucose with or without GH. Culture with 1 microgram/ml of bovine GH increased the DNA content of the islets and [3H]thymidine incorporation into DNA confirming results of other investigators. In addition, however, the insulin secretory dynamics and ultrastructural morphometrics were investigated. It was found that GH-treated islets demonstrated increased insulin release during acute glucose stimulation when expressed as microunits per islet per minute. However, when insulin release during acute glucose stimulation was expressed as microunits per microgram of DNA per minute to compensate for the increased DNA content of GH-treated islets, no change in insulin release was observed compared to control islets. When GH-treated islets were perifused with a linear glucose gradient, the insulin secretory response was suppressed as indicated by changes in the threshold level, plateau level, and half-maximal response. Ultrastructural morphometric data showed that the average beta-cell volume in control and GH-treated islets was the same, eliminating the possibility that beta-cell hypertrophy occurred. Similarly, the nuclear volumes of the beta cells in control and GH-treated islets remained unchanged. This finding coupled with the observed increased DNA content and [3H]thymidine incorporation suggests that GH functions by increasing cell multiplication within the islets and not by inducing polyploidy. Finally, the volumes of cytoplasmic organelles in control and GH-treated islets were the same indicating that cytodifferentiation did not occur.
ISSN:0037-9727
DOI:10.3181/00379727-177-41913