Surface modification of titanium by nano-TiO2/HA bioceramic coating

A nano-TiO2/hydroxyapatite composite bioceramic coating was developed and applied to the surfaces of pure titanium discs by the sol-gel method. A TiO2 anatase bioceramic coating was utilized in the inner layer, which could adhere tightly to the titanium substrate. A porous hydroxyapatite (HA) biocer...

Full description

Saved in:
Bibliographic Details
Published inApplied surface science Vol. 255; no. 2; pp. 442 - 445
Main Authors HE, G, HU, J, WEI, S. C, LI, J. H, LIANG, X. H, LUO, E
Format Conference Proceeding Journal Article
LanguageEnglish
Published Amsterdam Elsevier 15.11.2008
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A nano-TiO2/hydroxyapatite composite bioceramic coating was developed and applied to the surfaces of pure titanium discs by the sol-gel method. A TiO2 anatase bioceramic coating was utilized in the inner layer, which could adhere tightly to the titanium substrate. A porous hydroxyapatite (HA) bioceramic coating was utilized in the outer layer, which has higher solubility and better short-term bioactivity. Conventional HA coatings and commercially pure titanium were used as controls. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed to characterize the crystallization, surface morphology, and thickness of the coatings. The bioactivities of the coatings were evaluated by in vitro osteoblast cultures. Results showed that the nano-TiO2/HA composite bioceramic coating exhibited good crystallization and homogeneous, nano-scale surface morphology. In addition, the nano-TiO2/HA coating adhered tightly to the substrate, and the in vitro osteoblast cultures exhibited satisfactory bioactivity.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0169-4332
1873-5584
DOI:10.1016/j.apsusc.2008.06.088