In-situ prediction of the spatial surface roughness profile during slot milling

Quality inspection is traditionally considered non-productive. That is why the manufacturing industries aim to decrease inspection times to a bare minimum without sacrificing part quality. Alongside the implementation of the Industry 4.0 paradigm, data-driven in-situ quality control is a potential e...

Full description

Saved in:
Bibliographic Details
Published inMATEC web of conferences Vol. 368; p. 1019
Main Authors Peukert, Bernd, Rangaraju, Adithya, Archenti, Andreas
Format Journal Article Conference Proceeding
LanguageEnglish
Published Les Ulis EDP Sciences 2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Quality inspection is traditionally considered non-productive. That is why the manufacturing industries aim to decrease inspection times to a bare minimum without sacrificing part quality. Alongside the implementation of the Industry 4.0 paradigm, data-driven in-situ quality control is a potential enabler for minimizing inspection times. In that, the surface roughness parameter prediction is the subject of a large body of research, but studies on the spatial surface roughness profile prediction are limited. This research contributes to this field by using vibration signals and physics-informed machine learning models for the in-situ prediction of the surface roughness profile. A tri-axial accelerometer mounted on the machine tool spindle is used to capture the vibrations during a slot milling process. For one tool revolution during a stable cut, the observed acceleration in the three axes and the surface roughness profile are periodic. A model is constructed to establish the correlation between the input signals and the spatial surface roughness profile by utilizing a physics-based model of the tool trajectory together with a two-layer feed-forward neural network. Furthermore, the feature engineering of denoised velocities and displacements derived by the numerical integration of the acceleration signals improves the prediction performance with overfitting. The results show a good correlation between the spatial surface roughness and the accelerometer signals.
Bibliography:ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
ISSN:2261-236X
2274-7214
2261-236X
DOI:10.1051/matecconf/202236801019