Real-Time Deepfake Video Detection Using Eye Movement Analysis with a Hybrid Deep Learning Approach

Deepfake technology uses artificial intelligence to create realistic but false audio, images, and videos. Deepfake technology poses a significant threat to the authenticity of visual content, particularly in live-stream scenarios where the immediacy of detection is crucial. Existing Deepfake detecti...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 13; no. 15; p. 2947
Main Authors Javed, Muhammad, Zhang, Zhaohui, Dahri, Fida Hussain, Laghari, Asif Ali
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Deepfake technology uses artificial intelligence to create realistic but false audio, images, and videos. Deepfake technology poses a significant threat to the authenticity of visual content, particularly in live-stream scenarios where the immediacy of detection is crucial. Existing Deepfake detection approaches have limitations and challenges, prompting the need for more robust and accurate solutions. This research proposes an innovative approach: combining eye movement analysis with a hybrid deep learning model to address the need for real-time Deepfake detection. The proposed hybrid deep learning model integrates two deep neural network architectures, MesoNet4 and ResNet101, to leverage their respective architectures’ strengths for effective Deepfake classification. MesoNet4 is a lightweight CNN model designed explicitly to detect subtle manipulations in facial images. At the same time, ResNet101 handles complex visual data and robust feature extraction. Combining the localized feature learning of MesoNet4 with the deeper, more comprehensive feature representations of ResNet101, our robust hybrid model achieves enhanced performance in distinguishing between manipulated and authentic videos, which cannot be conducted with the naked eye or traditional methods. The model is evaluated on diverse datasets, including FaceForensics++, CelebV1, and CelebV2, demonstrating compelling accuracy results, with the hybrid model attaining an accuracy of 0.9873 on FaceForensics++, 0.9689 on CelebV1, and 0.9790 on CelebV2, showcasing its robustness and potential for real-world deployment in content integrity verification and video forensics applications.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics13152947