Role of SIRT1-mediated synaptic plasticity and neurogenesis: Sex-differences in antidepressant-like efficacy of catalpol

Catalpol, an important compound found in Rehmannia glutinosa (a plant with high nutritional and antidepressant medicinal value), exhibits various biological activities and has the ability to penetrate the blood-brain barrier. Our recent studies revealed a gender difference in the antidepressant acti...

Full description

Saved in:
Bibliographic Details
Published inPhytomedicine (Stuttgart) Vol. 135; p. 156120
Main Authors Wu, Xiaohui, Zhang, Yueyue, Wang, Junming, Qin, Lingyu, Li, Yamin, He, Qingwen, Zhang, Tianzhu, Wang, Yanmei, Song, Lingling, Ji, Lijie, Long, Bingyu, Wang, Qian
Format Journal Article
LanguageEnglish
Published Germany Elsevier GmbH 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Catalpol, an important compound found in Rehmannia glutinosa (a plant with high nutritional and antidepressant medicinal value), exhibits various biological activities and has the ability to penetrate the blood-brain barrier. Our recent studies revealed a gender difference in the antidepressant activity of Rehmannia glutinosa with females showing better responses than males. Catalpol is likely the key compound responsible for this gender-specific difference, which caters to current clinical observations that the severity and impact of depression are approximately two to three times higher in females than in males. However, the sex-specific mechanism of catalpol's antidepressant effects remains unclear. Our recent molecular network predictions suggest that the gender-specific antidepressant properties of catalpol primarily involve the regulation of SIRT1-mediated synaptic plasticity and neurogenesis. Building on this, the present study used a well-established chronic unpredictable mild stress model of depression in mice to confirm the sex-specific antidepressant characteristics of catalpol over time and intensity. Furthermore, using SIRT1 inhibitors and activators, behavioral tests, hematoxylin & eosin, Nissl, and Golgi staining, western blotting, immunofluorescence, and real-time PCR, we evaluated the key indicators of depressive behavior, synaptic plasticity, and neurogenesis before and after SIRT1 intervention to comprehensively assess whether the sex-specific antidepressant mechanism of catalpol indeed involves SIRT1-mediated synaptic plasticity and neurogenesis. The gender-dependent antidepressant effects of catalpol are characterized by a faster onset and stronger effects in females compared to males, with females showing stronger regulation of SIRT1-mediated synaptic plasticity and neurogenesis. Activation of SIRT1 preserved the gender differences in catalpol's effects on depressive behavior, hippocampal synaptic plasticity (including neuronal consolidation, neuronal density, dendritic spines, and PSD95 and SYP gene and protein expression), and neurogenesis (including enhancement of GAP43 and MAP2 expression, activation of c-myc, cyclinD1, Ngn2, and NeuroD1 mRNA levels, and upregulation of the Wnt3a/β-catenin/GSK-3β pathway), while inhibition of SIRT1 abolished these gender differences in the effects of catalpol. Catalpol exhibits higher antidepressant activity in female mice compared to male mice, and the mechanism underlying this gender difference in antidepressant effects may depend on catalpol's higher sensitivity in improving hippocampal SIRT1-mediated synaptic plasticity and neurogenesis in females. The novelty of this study lies in its first-time revelation of the gender-specific phenotypes, targets, and molecular mechanisms of the antidepressant effects of catalpol. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0944-7113
1618-095X
1618-095X
DOI:10.1016/j.phymed.2024.156120