A Cost-Effective System for EMG/MMG Signal Acquisition
This article presents a cost-effective, robust, and reliable system for EMG/MMG (electromyography/mechanomyography). Signals indicating muscle activity have numerous applications and are the subject of many studies. However, acquiring these signals is challenging. Commercial measurement systems are...
Saved in:
Published in | Electronics (Basel) Vol. 14; no. 7; p. 1468 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
05.04.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2079-9292 2079-9292 |
DOI | 10.3390/electronics14071468 |
Cover
Loading…
Summary: | This article presents a cost-effective, robust, and reliable system for EMG/MMG (electromyography/mechanomyography). Signals indicating muscle activity have numerous applications and are the subject of many studies. However, acquiring these signals is challenging. Commercial measurement systems are often expensive, limiting their accessibility. Therefore, the primary goal of this project was to develop a simple and affordable system for simultaneous EMG and MMG data acquisition, offering efficiency comparable to commercial systems. The system consists of eight EMG/MMG probes, 16-bit analog-to-digital converters with 16 channels, and a microprocessor unit. Despite its multiple components, the system remains simple and user-friendly. This paper describes the construction of the EMG/MMG probe and analyzes the intrinsic noise of the preamplifier, as well as electromagnetic interference, particularly power line noise. The elimination of power line noise was carried out in two stages: first, using techniques known for electromagnetic compatibility (EMC), and second, by implementing a digital filter in the microprocessor system. The proposed solution enables direct data collection from eight EMG/MMG probes using any computer equipped with a USB interface. This interface facilitates both data transmission and power supply, making EMG/MMG data acquisition straightforward and efficient. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics14071468 |