Stability Issues of Z + Z Type Cascade System in Hybrid Energy Storage System (HESS)

Stability issues in hybrid energy storage systems (HESSs) are the major concern, in addition to the control design challenges of individual modules. In this paper, the stability issues of Z + Z type cascade systems in HESS are focused. The stability issues of cascade systems have been studied for ma...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power electronics Vol. 29; no. 11; pp. 5846 - 5859
Main Authors Liu, Fangcheng, Liu, Jinjun, Zhang, Haodong, Xue, Danhong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Stability issues in hybrid energy storage systems (HESSs) are the major concern, in addition to the control design challenges of individual modules. In this paper, the stability issues of Z + Z type cascade systems in HESS are focused. The stability issues of cascade systems have been studied for many years. Impedance ratio type criterions in the form of ZS/ZL or ZL/ZS have been proposed to solve these stability issues. However, existing ratio type criteria still have problems in some cascade systems. The terminal characteristics of submodule are studied and the different types of cascade system are defined in this paper. The validity of conventional impedance ratio type criterion would be influenced by the right-half-plane zeros (RHZ) in terminal impedance of submodules in the Z + Z type cascade system. Two improved criteria are proposed for the Z + Z type cascade system: one is improved ratio type criterion considering the RHZ in the terminal impedance of the submodule; the other one is sum type criterion which does not need the information about RHZ in terminal impedance of each submodule. Experimental evidences are provided to prove the validity of these two improved criteria.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2013.2295259