Orientation Regulation of Class-switch Recombination in Human B Cells
We developed a linear amplification-mediated high-throughput genome-wide translocation sequencing method to profile Ig class-switch recombination (CSR) in human B cells in an unbiased and quantitative manner. This enables us to characterize CSR junctions resulting from either deletional recombinatio...
Saved in:
Published in | The Journal of immunology (1950) Vol. 213; no. 8; pp. 1093 - 1104 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
AAI
15.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We developed a linear amplification-mediated high-throughput genome-wide translocation sequencing method to profile Ig class-switch recombination (CSR) in human B cells in an unbiased and quantitative manner. This enables us to characterize CSR junctions resulting from either deletional recombination or inversion for each Ig class/subclass. Our data showed that more than 90% of CSR junctions detected in peripheral blood in healthy control subjects were due to deletional recombination. We further identified two major CSR junction signatures/patterns in human B cells. Signature 1 consists of recombination junctions resulting from both IgG and IgA switching, with a dominance of Sµ-Sγ junctions (72%) and deletional recombination (87%). Signature 2 is contributed mainly by Sµ-Sα junctions (96%), and these junctions were almost all due to deletional recombination (99%) and were characterized by longer microhomologies. CSR junctions identified in healthy individuals can be assigned to both signatures but with a dominance of signature 1, whereas almost all CSR junctions found in patients with defects in DNA-PKcs or Artemis, two classical nonhomologous end joining (c-NHEJ) factors, align with signature 2. Thus, signature 1 may represent c-NHEJ activity during CSR, whereas signature 2 is associated with microhomology-mediated alternative end joining in the absence of the studied c-NHEJ factors. Our findings suggest that in human B cells, the efficiency of the c-NHEJ machinery and the features of switch regions are crucial for the regulation of CSR orientation. Finally, our high-throughput method can also be applied to study the mechanism of rare types of recombination, such as switching to IgD and locus suicide switching. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. These authors are cosenior authors. |
ISSN: | 0022-1767 1550-6606 1550-6606 |
DOI: | 10.4049/jimmunol.2300842 |