High-density accessible Ru-Se-Ni moieties boost the hydrogen evolution reaction by optimizing H absorption
The rising demand for sustainable hydrogen production has led to intensified research into alternative catalysts for the Hydrogen Evolution Reaction (HER). This study focuses on incorporating ruthenium (Ru) into nickel selenide (NiSe 2 ) to boost the electrocatalytic efficiency of the HER. Theoretic...
Saved in:
Published in | Inorganic chemistry frontiers Vol. 11; no. 6; pp. 1733 - 1741 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Royal Society of Chemistry
12.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The rising demand for sustainable hydrogen production has led to intensified research into alternative catalysts for the Hydrogen Evolution Reaction (HER). This study focuses on incorporating ruthenium (Ru) into nickel selenide (NiSe
2
) to boost the electrocatalytic efficiency of the HER. Theoretical calculations suggest that Ru-Se-Ni moieties can alter the Gibbs free energy of adsorption for water molecules, thereby enhancing electrocatalytic kinetics. The experimental creation of RuNiSe
2
on nickel foam (RuNiSe
2
/NF) leads to a stable 3D structure with significant electrochemical stability. The catalyst exhibits a low overpotential of 36 mV to achieve a current density of 10 mA cm
2
and maintains long-term stability for over 60 hours. Theoretical predictions, corroborated by experimental findings, indicate that introducing a small quantity of Ru refines the electronic structure of NiSe
2
. This makes Ru-doped NiSe
2
a cost-effective and efficient catalyst for the HER in alkaline environments. The study offers important insights into designing catalysts for sustainable hydrogen production
via
water electrolysis.
Ru-doped NiSe
2
enhances HER, achieving 36 mV overpotential and exceptional durability in alkaline electrolytes, showcasing a novel approach to catalyst design. |
---|---|
AbstractList | The rising demand for sustainable hydrogen production has led to intensified research into alternative catalysts for the Hydrogen Evolution Reaction (HER). This study focuses on incorporating ruthenium (Ru) into nickel selenide (NiSe
2
) to boost the electrocatalytic efficiency of the HER. Theoretical calculations suggest that Ru-Se-Ni moieties can alter the Gibbs free energy of adsorption for water molecules, thereby enhancing electrocatalytic kinetics. The experimental creation of RuNiSe
2
on nickel foam (RuNiSe
2
/NF) leads to a stable 3D structure with significant electrochemical stability. The catalyst exhibits a low overpotential of 36 mV to achieve a current density of 10 mA cm
2
and maintains long-term stability for over 60 hours. Theoretical predictions, corroborated by experimental findings, indicate that introducing a small quantity of Ru refines the electronic structure of NiSe
2
. This makes Ru-doped NiSe
2
a cost-effective and efficient catalyst for the HER in alkaline environments. The study offers important insights into designing catalysts for sustainable hydrogen production
via
water electrolysis.
Ru-doped NiSe
2
enhances HER, achieving 36 mV overpotential and exceptional durability in alkaline electrolytes, showcasing a novel approach to catalyst design. The rising demand for sustainable hydrogen production has led to intensified research into alternative catalysts for the Hydrogen Evolution Reaction (HER). This study focuses on incorporating ruthenium (Ru) into nickel selenide (NiSe 2 ) to boost the electrocatalytic efficiency of the HER. Theoretical calculations suggest that Ru–Se–Ni moieties can alter the Gibbs free energy of adsorption for water molecules, thereby enhancing electrocatalytic kinetics. The experimental creation of Ru–NiSe 2 on nickel foam (Ru–NiSe 2 /NF) leads to a stable 3D structure with significant electrochemical stability. The catalyst exhibits a low overpotential of 36 mV to achieve a current density of 10 mA cm −2 and maintains long-term stability for over 60 hours. Theoretical predictions, corroborated by experimental findings, indicate that introducing a small quantity of Ru refines the electronic structure of NiSe 2 . This makes Ru-doped NiSe 2 a cost-effective and efficient catalyst for the HER in alkaline environments. The study offers important insights into designing catalysts for sustainable hydrogen production via water electrolysis. The rising demand for sustainable hydrogen production has led to intensified research into alternative catalysts for the Hydrogen Evolution Reaction (HER). This study focuses on incorporating ruthenium (Ru) into nickel selenide (NiSe2) to boost the electrocatalytic efficiency of the HER. Theoretical calculations suggest that Ru–Se–Ni moieties can alter the Gibbs free energy of adsorption for water molecules, thereby enhancing electrocatalytic kinetics. The experimental creation of Ru–NiSe2 on nickel foam (Ru–NiSe2/NF) leads to a stable 3D structure with significant electrochemical stability. The catalyst exhibits a low overpotential of 36 mV to achieve a current density of 10 mA cm−2 and maintains long-term stability for over 60 hours. Theoretical predictions, corroborated by experimental findings, indicate that introducing a small quantity of Ru refines the electronic structure of NiSe2. This makes Ru-doped NiSe2 a cost-effective and efficient catalyst for the HER in alkaline environments. The study offers important insights into designing catalysts for sustainable hydrogen production via water electrolysis. |
Author | Ma, Shuang Chang, Jin Li, Mengjing Zhang, Siqi Wang, Fanghan Li, Qingbin Zhou, Ao Yang, Peiying Zhang, Heng Liu, Jiafang Cheng, Chuan |
AuthorAffiliation | College of Chemistry and Material Science Pingdingshan University College of Chemistry School of Chemical & Environmental Engineering (Key Lab of Ecological Restoration in Hilly Areas) Key Lab of Clean Energy and Green Circulation Huaibei Normal University Xinyang Normal University Yaoshan Laboratory School of Physics and Electronic Engineering School of Innovation and Entrepreneurship Zhengzhou University |
AuthorAffiliation_xml | – name: Yaoshan Laboratory – name: Zhengzhou University – name: Key Lab of Clean Energy and Green Circulation – name: School of Innovation and Entrepreneurship – name: School of Physics and Electronic Engineering – name: College of Chemistry and Material Science – name: Huaibei Normal University – name: School of Chemical & Environmental Engineering (Key Lab of Ecological Restoration in Hilly Areas) – name: Pingdingshan University – name: Xinyang Normal University – name: College of Chemistry |
Author_xml | – sequence: 1 givenname: Shuang surname: Ma fullname: Ma, Shuang – sequence: 2 givenname: Peiying surname: Yang fullname: Yang, Peiying – sequence: 3 givenname: Jin surname: Chang fullname: Chang, Jin – sequence: 4 givenname: Heng surname: Zhang fullname: Zhang, Heng – sequence: 5 givenname: Mengjing surname: Li fullname: Li, Mengjing – sequence: 6 givenname: Siqi surname: Zhang fullname: Zhang, Siqi – sequence: 7 givenname: Jiafang surname: Liu fullname: Liu, Jiafang – sequence: 8 givenname: Fanghan surname: Wang fullname: Wang, Fanghan – sequence: 9 givenname: Chuan surname: Cheng fullname: Cheng, Chuan – sequence: 10 givenname: Ao surname: Zhou fullname: Zhou, Ao – sequence: 11 givenname: Qingbin surname: Li fullname: Li, Qingbin |
BookMark | eNpNkEtLAzEUhYNUsNZu3AsBd8JoHpNMZyn10YoovtbDJLnTZmgnbZIRxl9vH6Ku7oH7cQ58x6jXuAYQOqXkkhKeXxm-toRJOaoPUJ8RwRIqBO_9y0doGEJNCKE0JVSSPqondjZPDDTBxg6XWkMIVi0Av7bJGyRPFi-dhWghYOVciDjOAc87490MGgyfbtFG6xrsodS7oDrsVtEu7ZdtZniCSxWcX21fJ-iwKhcBhj93gD7ubt_Hk-Tx-X46vn5MNEtJTNIUeCkzo0kKVLAqY1JXQCRkYpQLTRVL85woQyGvuOCmUjKXRsEoy9LScMYH6Hzfu_Ju3UKIRe1a32wmC5YLwZikQm6oiz2lvQvBQ1WsvF2WvisoKbY6ixv-Mt3pfNjAZ3vYB_3L_enm34tadD8 |
Cites_doi | 10.1039/D3QI02079G 10.1016/j.jcis.2020.04.034 10.1016/j.ijhydene.2023.08.344 10.1039/D2QI02389J 10.1002/adma.201802121 10.1016/j.apcatb.2022.121095 10.1016/j.cej.2022.138618 10.1021/jacs.3c06726 10.1002/smll.202300974 10.1016/j.nanoen.2020.105467 10.1002/anie.202212196 10.1002/aenm.202200029 10.1002/advs.202206029 10.1002/adfm.202212321 10.1002/adfm.202214375 10.1021/acsami.9b16626 10.1016/j.gee.2021.09.005 10.1016/j.nanoen.2020.105234 10.1016/j.apcatb.2020.118976 10.1039/D1DT03814A 10.1039/D3QI00519D 10.1016/j.cclet.2022.06.045 10.1021/acs.inorgchem.3c04291 10.1021/acsami.5b12093 10.1002/adfm.202309056 10.1002/idm2.12011 10.1007/s41918-020-00086-z 10.1002/adma.202110103 10.1002/smll.202105305 10.1002/ange.202114951 10.1016/j.jcis.2023.03.175 10.1007/s40820-018-0235-z 10.1002/ange.202113664 10.1002/smll.201900248 10.1007/s12598-020-01541-y 10.1039/D1TA06149F 10.1016/j.apcatb.2022.121434 10.1016/S1872-2067(23)64456-0 10.1016/j.cej.2022.137791 10.1016/j.cjsc.2023.100031 10.1002/adma.202104405 10.1002/adfm.202203263 10.1039/D1TA07393A 10.1038/s41467-022-28947-9 10.1002/adma.202310699 10.1007/s40820-023-01192-5 10.1002/advs.202200307 10.1039/D2CC06727G 10.1039/D0NR05250G 10.1002/idm2.12010 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1039/d3qi02668j |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2052-1553 |
EndPage | 1741 |
ExternalDocumentID | 10_1039_D3QI02668J d3qi02668j |
GroupedDBID | 0R~ AAEMU AAXHV ABASK ABMYL ACGFS ACLDK AETIL AFOGI AGRSR AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI BLAPV C6K EBS ECGLT HZ~ M~E O9- RCNCU RRC RSCEA RVUXY AAJAE AARTK AAYXX ABPDG ADSRN AENGV AGEGJ APEMP CITATION GGIMP H13 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c240t-44e3a67dc04e152f726cfe06e75895c1b24990bd1e9f353dfb696dbe8774ad323 |
ISSN | 2052-1553 2052-1545 |
IngestDate | Thu Oct 10 20:18:19 EDT 2024 Fri Aug 23 00:43:10 EDT 2024 Wed Mar 13 05:35:09 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c240t-44e3a67dc04e152f726cfe06e75895c1b24990bd1e9f353dfb696dbe8774ad323 |
Notes | https://doi.org/10.1039/d3qi02668j Electronic supplementary information (ESI) available. See DOI |
ORCID | 0000-0002-2817-2803 |
PQID | 2955226156 |
PQPubID | 2048885 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1039_D3QI02668J rsc_primary_d3qi02668j proquest_journals_2955226156 |
PublicationCentury | 2000 |
PublicationDate | 2024-03-12 |
PublicationDateYYYYMMDD | 2024-03-12 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Inorganic chemistry frontiers |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Li (D3QI02668J/cit42/1) 2022; 51 Wu (D3QI02668J/cit48/1) 2021; 80 Jin (D3QI02668J/cit46/1) 2020; 12 Xu (D3QI02668J/cit47/1) 2022; 32 Jiang (D3QI02668J/cit12/1) 2019; 11 Li (D3QI02668J/cit22/1) 2024; 63 Yang (D3QI02668J/cit36/1) 2023; 42 Peng (D3QI02668J/cit21/1) 2020; 78 Jiang (D3QI02668J/cit39/1) 2023 Li (D3QI02668J/cit37/1) 2023; 34 Yi (D3QI02668J/cit16/1) 2023; 10 Wu (D3QI02668J/cit52/1) 2022; 7 Shen (D3QI02668J/cit49/1) 2024; 34 Qin (D3QI02668J/cit23/1) 2022; 18 Xue (D3QI02668J/cit9/1) 2022; 312 Nai (D3QI02668J/cit18/1) 2022; 34 Ding (D3QI02668J/cit13/1) 2021; 40 Zhang (D3QI02668J/cit24/1) 2022; 1 Yu (D3QI02668J/cit15/1) 2022; 449 Du (D3QI02668J/cit14/1) 2019; 12 Han (D3QI02668J/cit35/1) 2023; 51 Shah (D3QI02668J/cit28/1) 2022; 134 Rong (D3QI02668J/cit31/1) 2022; 34 Kwak (D3QI02668J/cit19/1) 2016; 8 Li (D3QI02668J/cit40/1) 2022; 306 Jun (D3QI02668J/cit7/1) 2023; 50 Liu (D3QI02668J/cit51/1) 2023; 10 Jiang (D3QI02668J/cit4/1) 2024; 36 Liu (D3QI02668J/cit3/1) 2022; 9 Chang (D3QI02668J/cit10/1) 2022; 10 Li (D3QI02668J/cit8/1) 2024; 11 Li (D3QI02668J/cit5/1) 2023; 10 Li (D3QI02668J/cit34/1) 2022; 12 Wu (D3QI02668J/cit45/1) 2020; 59 Zuo (D3QI02668J/cit50/1) 2023; 145 Thalluri (D3QI02668J/cit27/1) 2023; 19 Li (D3QI02668J/cit32/1) 2022; 13 Li (D3QI02668J/cit6/1) 2023; 59 Li (D3QI02668J/cit29/1) 2023; 451 Chen (D3QI02668J/cit20/1) 2020; 574 Paul (D3QI02668J/cit33/1) 2022; 1 Sun (D3QI02668J/cit17/1) 2018; 30 Wu (D3QI02668J/cit44/1) 2023; 33 Ma (D3QI02668J/cit41/1) 2023; 642 Li (D3QI02668J/cit2/1) 2023; 15 Wang (D3QI02668J/cit30/1) 2023; 33 Zhou (D3QI02668J/cit26/1) 2022; 61 Kou (D3QI02668J/cit38/1) 2019; 15 Cai (D3QI02668J/cit25/1) 2022; 134 Wu (D3QI02668J/cit1/1) 2021; 4 Huang (D3QI02668J/cit11/1) 2020; 272 Li (D3QI02668J/cit43/1) 2021; 9 |
References_xml | – volume: 11 start-page: 745 year: 2024 ident: D3QI02668J/cit8/1 publication-title: Inorg. Chem. Front. doi: 10.1039/D3QI02079G contributor: fullname: Li – volume: 574 start-page: 300 year: 2020 ident: D3QI02668J/cit20/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.04.034 contributor: fullname: Chen – volume: 51 start-page: 769 year: 2023 ident: D3QI02668J/cit35/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2023.08.344 contributor: fullname: Han – volume: 10 start-page: 1587 year: 2023 ident: D3QI02668J/cit51/1 publication-title: Inorg. Chem. Front. doi: 10.1039/D2QI02389J contributor: fullname: Liu – volume: 30 start-page: 1802121 year: 2018 ident: D3QI02668J/cit17/1 publication-title: Adv. Mater. doi: 10.1002/adma.201802121 contributor: fullname: Sun – volume: 306 start-page: 121095 year: 2022 ident: D3QI02668J/cit40/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.121095 contributor: fullname: Li – volume: 451 start-page: 138618 year: 2023 ident: D3QI02668J/cit29/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.138618 contributor: fullname: Li – volume: 145 start-page: 21419 year: 2023 ident: D3QI02668J/cit50/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c06726 contributor: fullname: Zuo – volume: 19 start-page: 2300974 year: 2023 ident: D3QI02668J/cit27/1 publication-title: Small doi: 10.1002/smll.202300974 contributor: fullname: Thalluri – volume: 80 start-page: 105467 year: 2021 ident: D3QI02668J/cit48/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105467 contributor: fullname: Wu – volume: 61 start-page: e202212196 year: 2022 ident: D3QI02668J/cit26/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202212196 contributor: fullname: Zhou – volume: 12 start-page: 2200029 year: 2022 ident: D3QI02668J/cit34/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202200029 contributor: fullname: Li – volume: 10 start-page: 2206029 year: 2023 ident: D3QI02668J/cit16/1 publication-title: Adv. Sci. doi: 10.1002/advs.202206029 contributor: fullname: Yi – volume: 33 start-page: 2212321 year: 2023 ident: D3QI02668J/cit30/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202212321 contributor: fullname: Wang – volume: 33 start-page: 2214375 issue: 16 year: 2023 ident: D3QI02668J/cit44/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202214375 contributor: fullname: Wu – volume: 12 start-page: 686 year: 2019 ident: D3QI02668J/cit14/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b16626 contributor: fullname: Du – volume: 59 start-page: e202011523 year: 2020 ident: D3QI02668J/cit45/1 publication-title: Angew. Chem., Int. Ed. contributor: fullname: Wu – volume: 7 start-page: 799 issue: 4 year: 2022 ident: D3QI02668J/cit52/1 publication-title: Green Energy Environ. doi: 10.1016/j.gee.2021.09.005 contributor: fullname: Wu – volume: 78 start-page: 105234 year: 2020 ident: D3QI02668J/cit21/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105234 contributor: fullname: Peng – volume: 272 start-page: 118976 year: 2020 ident: D3QI02668J/cit11/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.118976 contributor: fullname: Huang – volume: 51 start-page: 3970 year: 2022 ident: D3QI02668J/cit42/1 publication-title: Dalton Trans. doi: 10.1039/D1DT03814A contributor: fullname: Li – volume: 10 start-page: 3675 year: 2023 ident: D3QI02668J/cit5/1 publication-title: Inorg. Chem. Front. doi: 10.1039/D3QI00519D contributor: fullname: Li – volume: 34 start-page: 107622 year: 2023 ident: D3QI02668J/cit37/1 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2022.06.045 contributor: fullname: Li – volume: 63 start-page: 2282 year: 2024 ident: D3QI02668J/cit22/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.3c04291 contributor: fullname: Li – volume: 8 start-page: 5327 year: 2016 ident: D3QI02668J/cit19/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b12093 contributor: fullname: Kwak – volume: 34 start-page: 2309056 year: 2024 ident: D3QI02668J/cit49/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202309056 contributor: fullname: Shen – volume: 1 start-page: 51 issue: 1 year: 2022 ident: D3QI02668J/cit24/1 publication-title: Interdiscip. Mater. doi: 10.1002/idm2.12011 contributor: fullname: Zhang – volume: 4 start-page: 473 year: 2021 ident: D3QI02668J/cit1/1 publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-020-00086-z contributor: fullname: Wu – volume: 34 start-page: 2110103 year: 2022 ident: D3QI02668J/cit31/1 publication-title: Adv. Mater. doi: 10.1002/adma.202110103 contributor: fullname: Rong – volume: 18 start-page: 2105305 year: 2022 ident: D3QI02668J/cit23/1 publication-title: Small doi: 10.1002/smll.202105305 contributor: fullname: Qin – volume: 134 start-page: e202115939 year: 2022 ident: D3QI02668J/cit28/1 publication-title: Angew. Chem. doi: 10.1002/ange.202114951 contributor: fullname: Shah – start-page: 2310699 year: 2023 ident: D3QI02668J/cit39/1 publication-title: Adv. Mater. contributor: fullname: Jiang – volume: 642 start-page: 604 year: 2023 ident: D3QI02668J/cit41/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2023.03.175 contributor: fullname: Ma – volume: 11 start-page: 1 year: 2019 ident: D3QI02668J/cit12/1 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-018-0235-z contributor: fullname: Jiang – volume: 134 start-page: e202113664 year: 2022 ident: D3QI02668J/cit25/1 publication-title: Angew. Chem. doi: 10.1002/ange.202113664 contributor: fullname: Cai – volume: 15 start-page: 1900248 year: 2019 ident: D3QI02668J/cit38/1 publication-title: Small doi: 10.1002/smll.201900248 contributor: fullname: Kou – volume: 40 start-page: 1373 year: 2021 ident: D3QI02668J/cit13/1 publication-title: Rare Met. doi: 10.1007/s12598-020-01541-y contributor: fullname: Ding – volume: 9 start-page: 27061 year: 2021 ident: D3QI02668J/cit43/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA06149F contributor: fullname: Li – volume: 312 start-page: 121434 year: 2022 ident: D3QI02668J/cit9/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.121434 contributor: fullname: Xue – volume: 50 start-page: 195 year: 2023 ident: D3QI02668J/cit7/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(23)64456-0 contributor: fullname: Jun – volume: 449 start-page: 137791 year: 2022 ident: D3QI02668J/cit15/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137791 contributor: fullname: Yu – volume: 42 start-page: 100031 year: 2023 ident: D3QI02668J/cit36/1 publication-title: Chin. J. Struct. Chem. doi: 10.1016/j.cjsc.2023.100031 contributor: fullname: Yang – volume: 34 start-page: 2104405 year: 2022 ident: D3QI02668J/cit18/1 publication-title: Adv. Mater. doi: 10.1002/adma.202104405 contributor: fullname: Nai – volume: 32 start-page: 2203263 year: 2022 ident: D3QI02668J/cit47/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202203263 contributor: fullname: Xu – volume: 10 start-page: 3102 year: 2022 ident: D3QI02668J/cit10/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA07393A contributor: fullname: Chang – volume: 13 start-page: 1270 year: 2022 ident: D3QI02668J/cit32/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-28947-9 contributor: fullname: Li – volume: 36 start-page: 2310699 issue: 2 year: 2024 ident: D3QI02668J/cit4/1 publication-title: Adv. Mater. doi: 10.1002/adma.202310699 contributor: fullname: Jiang – volume: 15 start-page: 227 issue: 1 year: 2023 ident: D3QI02668J/cit2/1 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-023-01192-5 contributor: fullname: Li – volume: 9 start-page: 2200307 year: 2022 ident: D3QI02668J/cit3/1 publication-title: Adv. Sci. doi: 10.1002/advs.202200307 contributor: fullname: Liu – volume: 59 start-page: 4750 issue: 32 year: 2023 ident: D3QI02668J/cit6/1 publication-title: Chem. Commun. doi: 10.1039/D2CC06727G contributor: fullname: Li – volume: 12 start-page: 21850 year: 2020 ident: D3QI02668J/cit46/1 publication-title: Nanoscale doi: 10.1039/D0NR05250G contributor: fullname: Jin – volume: 1 start-page: 28 issue: 1 year: 2022 ident: D3QI02668J/cit33/1 publication-title: Interdiscip. Mater. doi: 10.1002/idm2.12010 contributor: fullname: Paul |
SSID | ssj0001140160 ssib020509107 |
Score | 2.3548203 |
Snippet | The rising demand for sustainable hydrogen production has led to intensified research into alternative catalysts for the Hydrogen Evolution Reaction (HER).... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Publisher |
StartPage | 1733 |
SubjectTerms | Catalysts Electrolysis Electronic structure Gibbs free energy Hydrogen Hydrogen evolution reactions Hydrogen production Metal foams Nickel Ruthenium Selenium Water chemistry |
Title | High-density accessible Ru-Se-Ni moieties boost the hydrogen evolution reaction by optimizing H absorption |
URI | https://www.proquest.com/docview/2955226156 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1da9swFIbF2t7sZmx0ZdnaIejujDfbsuTosnQdbljLtqbQO2N9eHWgcZc4g_TX98iWrBQ6WAvBBDs2QY9y9B7lfCD0yUhsLhkQyDgP0zImIYd1AnwerTJFkzGlJsH57Jzll-nkil75sOYuu6QVn-Xdo3klz6EK54CryZJ9AtnhoXAC3gNfOAJhOP4XYxOkESoTgg5SuuxaH9YmE-rXKrzQ4Xkd3DS1NhVTA9DSyy5rMbheq0Xz29T2_2u_WwC6sW8YDlK0ARNyU9-ZDYQ8KMWyWdwO6GYu6r1vBSUD6brFmSyVeVtr_9fQWSdKL65XpV0ajWWxe9M_dL2u_eljt2c9qYeZOuxj59p-0O5MJKkJzbIx0bqzYElEk9A0JnpgbuONabVpO-OsL4lh12FwleJHbXxETIlURf7U4D-y8cyvZEN8ob-4hXZgFhKwfTtHJ9PT737_zXiWLHIVawn_4m96qFG847G1cF1hOvUxfY1eWbcBH_Vz4A16oee7aLbJH3v-2PHHjj_u-GPgjx1_PPDHjj8Wa-z54xx7_m_R5beT6XEe2t4ZoQSN1oZpqknJMiWjVINEq7KEyUpHTIN_yKmMBbjdPBIq1rwilKhKMM6U0GNwB0pFErKHtufNXL9DWMkkZlVa8lTCi8XwWJDNNJElp4IKPUKHbrSK275EStGFNhBefCU_T7sxnYzQvhvIwv6ElkXCqdH_MWUjtAeDO9zvWbz_14UP6KWfdPtou12s9AEIxFZ8tKzvAa3jbNo |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-density+accessible+Ru-Se-Ni+moieties+boost+the+hydrogen+evolution+reaction+by+optimizing+H+absorption&rft.jtitle=Inorganic+chemistry+frontiers&rft.au=Ma%2C+Shuang&rft.au=Yang%2C+Peiying&rft.au=Chang%2C+Jin&rft.au=Zhang%2C+Heng&rft.date=2024-03-12&rft.eissn=2052-1553&rft.volume=11&rft.issue=6&rft.spage=1733&rft.epage=1741&rft_id=info:doi/10.1039%2Fd3qi02668j&rft.externalDocID=d3qi02668j |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-1553&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-1553&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-1553&client=summon |