High-density accessible Ru-Se-Ni moieties boost the hydrogen evolution reaction by optimizing H absorption

The rising demand for sustainable hydrogen production has led to intensified research into alternative catalysts for the Hydrogen Evolution Reaction (HER). This study focuses on incorporating ruthenium (Ru) into nickel selenide (NiSe 2 ) to boost the electrocatalytic efficiency of the HER. Theoretic...

Full description

Saved in:
Bibliographic Details
Published inInorganic chemistry frontiers Vol. 11; no. 6; pp. 1733 - 1741
Main Authors Ma, Shuang, Yang, Peiying, Chang, Jin, Zhang, Heng, Li, Mengjing, Zhang, Siqi, Liu, Jiafang, Wang, Fanghan, Cheng, Chuan, Zhou, Ao, Li, Qingbin
Format Journal Article
LanguageEnglish
Published London Royal Society of Chemistry 12.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rising demand for sustainable hydrogen production has led to intensified research into alternative catalysts for the Hydrogen Evolution Reaction (HER). This study focuses on incorporating ruthenium (Ru) into nickel selenide (NiSe 2 ) to boost the electrocatalytic efficiency of the HER. Theoretical calculations suggest that Ru-Se-Ni moieties can alter the Gibbs free energy of adsorption for water molecules, thereby enhancing electrocatalytic kinetics. The experimental creation of RuNiSe 2 on nickel foam (RuNiSe 2 /NF) leads to a stable 3D structure with significant electrochemical stability. The catalyst exhibits a low overpotential of 36 mV to achieve a current density of 10 mA cm 2 and maintains long-term stability for over 60 hours. Theoretical predictions, corroborated by experimental findings, indicate that introducing a small quantity of Ru refines the electronic structure of NiSe 2 . This makes Ru-doped NiSe 2 a cost-effective and efficient catalyst for the HER in alkaline environments. The study offers important insights into designing catalysts for sustainable hydrogen production via water electrolysis. Ru-doped NiSe 2 enhances HER, achieving 36 mV overpotential and exceptional durability in alkaline electrolytes, showcasing a novel approach to catalyst design.
AbstractList The rising demand for sustainable hydrogen production has led to intensified research into alternative catalysts for the Hydrogen Evolution Reaction (HER). This study focuses on incorporating ruthenium (Ru) into nickel selenide (NiSe 2 ) to boost the electrocatalytic efficiency of the HER. Theoretical calculations suggest that Ru-Se-Ni moieties can alter the Gibbs free energy of adsorption for water molecules, thereby enhancing electrocatalytic kinetics. The experimental creation of RuNiSe 2 on nickel foam (RuNiSe 2 /NF) leads to a stable 3D structure with significant electrochemical stability. The catalyst exhibits a low overpotential of 36 mV to achieve a current density of 10 mA cm 2 and maintains long-term stability for over 60 hours. Theoretical predictions, corroborated by experimental findings, indicate that introducing a small quantity of Ru refines the electronic structure of NiSe 2 . This makes Ru-doped NiSe 2 a cost-effective and efficient catalyst for the HER in alkaline environments. The study offers important insights into designing catalysts for sustainable hydrogen production via water electrolysis. Ru-doped NiSe 2 enhances HER, achieving 36 mV overpotential and exceptional durability in alkaline electrolytes, showcasing a novel approach to catalyst design.
The rising demand for sustainable hydrogen production has led to intensified research into alternative catalysts for the Hydrogen Evolution Reaction (HER). This study focuses on incorporating ruthenium (Ru) into nickel selenide (NiSe 2 ) to boost the electrocatalytic efficiency of the HER. Theoretical calculations suggest that Ru–Se–Ni moieties can alter the Gibbs free energy of adsorption for water molecules, thereby enhancing electrocatalytic kinetics. The experimental creation of Ru–NiSe 2 on nickel foam (Ru–NiSe 2 /NF) leads to a stable 3D structure with significant electrochemical stability. The catalyst exhibits a low overpotential of 36 mV to achieve a current density of 10 mA cm −2 and maintains long-term stability for over 60 hours. Theoretical predictions, corroborated by experimental findings, indicate that introducing a small quantity of Ru refines the electronic structure of NiSe 2 . This makes Ru-doped NiSe 2 a cost-effective and efficient catalyst for the HER in alkaline environments. The study offers important insights into designing catalysts for sustainable hydrogen production via water electrolysis.
The rising demand for sustainable hydrogen production has led to intensified research into alternative catalysts for the Hydrogen Evolution Reaction (HER). This study focuses on incorporating ruthenium (Ru) into nickel selenide (NiSe2) to boost the electrocatalytic efficiency of the HER. Theoretical calculations suggest that Ru–Se–Ni moieties can alter the Gibbs free energy of adsorption for water molecules, thereby enhancing electrocatalytic kinetics. The experimental creation of Ru–NiSe2 on nickel foam (Ru–NiSe2/NF) leads to a stable 3D structure with significant electrochemical stability. The catalyst exhibits a low overpotential of 36 mV to achieve a current density of 10 mA cm−2 and maintains long-term stability for over 60 hours. Theoretical predictions, corroborated by experimental findings, indicate that introducing a small quantity of Ru refines the electronic structure of NiSe2. This makes Ru-doped NiSe2 a cost-effective and efficient catalyst for the HER in alkaline environments. The study offers important insights into designing catalysts for sustainable hydrogen production via water electrolysis.
Author Ma, Shuang
Chang, Jin
Li, Mengjing
Zhang, Siqi
Wang, Fanghan
Li, Qingbin
Zhou, Ao
Yang, Peiying
Zhang, Heng
Liu, Jiafang
Cheng, Chuan
AuthorAffiliation College of Chemistry and Material Science
Pingdingshan University
College of Chemistry
School of Chemical & Environmental Engineering (Key Lab of Ecological Restoration in Hilly Areas)
Key Lab of Clean Energy and Green Circulation
Huaibei Normal University
Xinyang Normal University
Yaoshan Laboratory
School of Physics and Electronic Engineering
School of Innovation and Entrepreneurship
Zhengzhou University
AuthorAffiliation_xml – name: Yaoshan Laboratory
– name: Zhengzhou University
– name: Key Lab of Clean Energy and Green Circulation
– name: School of Innovation and Entrepreneurship
– name: School of Physics and Electronic Engineering
– name: College of Chemistry and Material Science
– name: Huaibei Normal University
– name: School of Chemical & Environmental Engineering (Key Lab of Ecological Restoration in Hilly Areas)
– name: Pingdingshan University
– name: Xinyang Normal University
– name: College of Chemistry
Author_xml – sequence: 1
  givenname: Shuang
  surname: Ma
  fullname: Ma, Shuang
– sequence: 2
  givenname: Peiying
  surname: Yang
  fullname: Yang, Peiying
– sequence: 3
  givenname: Jin
  surname: Chang
  fullname: Chang, Jin
– sequence: 4
  givenname: Heng
  surname: Zhang
  fullname: Zhang, Heng
– sequence: 5
  givenname: Mengjing
  surname: Li
  fullname: Li, Mengjing
– sequence: 6
  givenname: Siqi
  surname: Zhang
  fullname: Zhang, Siqi
– sequence: 7
  givenname: Jiafang
  surname: Liu
  fullname: Liu, Jiafang
– sequence: 8
  givenname: Fanghan
  surname: Wang
  fullname: Wang, Fanghan
– sequence: 9
  givenname: Chuan
  surname: Cheng
  fullname: Cheng, Chuan
– sequence: 10
  givenname: Ao
  surname: Zhou
  fullname: Zhou, Ao
– sequence: 11
  givenname: Qingbin
  surname: Li
  fullname: Li, Qingbin
BookMark eNpNkEtLAzEUhYNUsNZu3AsBd8JoHpNMZyn10YoovtbDJLnTZmgnbZIRxl9vH6Ku7oH7cQ58x6jXuAYQOqXkkhKeXxm-toRJOaoPUJ8RwRIqBO_9y0doGEJNCKE0JVSSPqondjZPDDTBxg6XWkMIVi0Av7bJGyRPFi-dhWghYOVciDjOAc87490MGgyfbtFG6xrsodS7oDrsVtEu7ZdtZniCSxWcX21fJ-iwKhcBhj93gD7ubt_Hk-Tx-X46vn5MNEtJTNIUeCkzo0kKVLAqY1JXQCRkYpQLTRVL85woQyGvuOCmUjKXRsEoy9LScMYH6Hzfu_Ju3UKIRe1a32wmC5YLwZikQm6oiz2lvQvBQ1WsvF2WvisoKbY6ixv-Mt3pfNjAZ3vYB_3L_enm34tadD8
Cites_doi 10.1039/D3QI02079G
10.1016/j.jcis.2020.04.034
10.1016/j.ijhydene.2023.08.344
10.1039/D2QI02389J
10.1002/adma.201802121
10.1016/j.apcatb.2022.121095
10.1016/j.cej.2022.138618
10.1021/jacs.3c06726
10.1002/smll.202300974
10.1016/j.nanoen.2020.105467
10.1002/anie.202212196
10.1002/aenm.202200029
10.1002/advs.202206029
10.1002/adfm.202212321
10.1002/adfm.202214375
10.1021/acsami.9b16626
10.1016/j.gee.2021.09.005
10.1016/j.nanoen.2020.105234
10.1016/j.apcatb.2020.118976
10.1039/D1DT03814A
10.1039/D3QI00519D
10.1016/j.cclet.2022.06.045
10.1021/acs.inorgchem.3c04291
10.1021/acsami.5b12093
10.1002/adfm.202309056
10.1002/idm2.12011
10.1007/s41918-020-00086-z
10.1002/adma.202110103
10.1002/smll.202105305
10.1002/ange.202114951
10.1016/j.jcis.2023.03.175
10.1007/s40820-018-0235-z
10.1002/ange.202113664
10.1002/smll.201900248
10.1007/s12598-020-01541-y
10.1039/D1TA06149F
10.1016/j.apcatb.2022.121434
10.1016/S1872-2067(23)64456-0
10.1016/j.cej.2022.137791
10.1016/j.cjsc.2023.100031
10.1002/adma.202104405
10.1002/adfm.202203263
10.1039/D1TA07393A
10.1038/s41467-022-28947-9
10.1002/adma.202310699
10.1007/s40820-023-01192-5
10.1002/advs.202200307
10.1039/D2CC06727G
10.1039/D0NR05250G
10.1002/idm2.12010
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1039/d3qi02668j
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
EISSN 2052-1553
EndPage 1741
ExternalDocumentID 10_1039_D3QI02668J
d3qi02668j
GroupedDBID 0R~
AAEMU
AAXHV
ABASK
ABMYL
ACGFS
ACLDK
AETIL
AFOGI
AGRSR
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
BLAPV
C6K
EBS
ECGLT
HZ~
M~E
O9-
RCNCU
RRC
RSCEA
RVUXY
AAJAE
AARTK
AAYXX
ABPDG
ADSRN
AENGV
AGEGJ
APEMP
CITATION
GGIMP
H13
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c240t-44e3a67dc04e152f726cfe06e75895c1b24990bd1e9f353dfb696dbe8774ad323
ISSN 2052-1553
2052-1545
IngestDate Thu Oct 10 20:18:19 EDT 2024
Fri Aug 23 00:43:10 EDT 2024
Wed Mar 13 05:35:09 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c240t-44e3a67dc04e152f726cfe06e75895c1b24990bd1e9f353dfb696dbe8774ad323
Notes https://doi.org/10.1039/d3qi02668j
Electronic supplementary information (ESI) available. See DOI
ORCID 0000-0002-2817-2803
PQID 2955226156
PQPubID 2048885
PageCount 9
ParticipantIDs crossref_primary_10_1039_D3QI02668J
rsc_primary_d3qi02668j
proquest_journals_2955226156
PublicationCentury 2000
PublicationDate 2024-03-12
PublicationDateYYYYMMDD 2024-03-12
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-12
  day: 12
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Inorganic chemistry frontiers
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Li (D3QI02668J/cit42/1) 2022; 51
Wu (D3QI02668J/cit48/1) 2021; 80
Jin (D3QI02668J/cit46/1) 2020; 12
Xu (D3QI02668J/cit47/1) 2022; 32
Jiang (D3QI02668J/cit12/1) 2019; 11
Li (D3QI02668J/cit22/1) 2024; 63
Yang (D3QI02668J/cit36/1) 2023; 42
Peng (D3QI02668J/cit21/1) 2020; 78
Jiang (D3QI02668J/cit39/1) 2023
Li (D3QI02668J/cit37/1) 2023; 34
Yi (D3QI02668J/cit16/1) 2023; 10
Wu (D3QI02668J/cit52/1) 2022; 7
Shen (D3QI02668J/cit49/1) 2024; 34
Qin (D3QI02668J/cit23/1) 2022; 18
Xue (D3QI02668J/cit9/1) 2022; 312
Nai (D3QI02668J/cit18/1) 2022; 34
Ding (D3QI02668J/cit13/1) 2021; 40
Zhang (D3QI02668J/cit24/1) 2022; 1
Yu (D3QI02668J/cit15/1) 2022; 449
Du (D3QI02668J/cit14/1) 2019; 12
Han (D3QI02668J/cit35/1) 2023; 51
Shah (D3QI02668J/cit28/1) 2022; 134
Rong (D3QI02668J/cit31/1) 2022; 34
Kwak (D3QI02668J/cit19/1) 2016; 8
Li (D3QI02668J/cit40/1) 2022; 306
Jun (D3QI02668J/cit7/1) 2023; 50
Liu (D3QI02668J/cit51/1) 2023; 10
Jiang (D3QI02668J/cit4/1) 2024; 36
Liu (D3QI02668J/cit3/1) 2022; 9
Chang (D3QI02668J/cit10/1) 2022; 10
Li (D3QI02668J/cit8/1) 2024; 11
Li (D3QI02668J/cit5/1) 2023; 10
Li (D3QI02668J/cit34/1) 2022; 12
Wu (D3QI02668J/cit45/1) 2020; 59
Zuo (D3QI02668J/cit50/1) 2023; 145
Thalluri (D3QI02668J/cit27/1) 2023; 19
Li (D3QI02668J/cit32/1) 2022; 13
Li (D3QI02668J/cit6/1) 2023; 59
Li (D3QI02668J/cit29/1) 2023; 451
Chen (D3QI02668J/cit20/1) 2020; 574
Paul (D3QI02668J/cit33/1) 2022; 1
Sun (D3QI02668J/cit17/1) 2018; 30
Wu (D3QI02668J/cit44/1) 2023; 33
Ma (D3QI02668J/cit41/1) 2023; 642
Li (D3QI02668J/cit2/1) 2023; 15
Wang (D3QI02668J/cit30/1) 2023; 33
Zhou (D3QI02668J/cit26/1) 2022; 61
Kou (D3QI02668J/cit38/1) 2019; 15
Cai (D3QI02668J/cit25/1) 2022; 134
Wu (D3QI02668J/cit1/1) 2021; 4
Huang (D3QI02668J/cit11/1) 2020; 272
Li (D3QI02668J/cit43/1) 2021; 9
References_xml – volume: 11
  start-page: 745
  year: 2024
  ident: D3QI02668J/cit8/1
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D3QI02079G
  contributor:
    fullname: Li
– volume: 574
  start-page: 300
  year: 2020
  ident: D3QI02668J/cit20/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.04.034
  contributor:
    fullname: Chen
– volume: 51
  start-page: 769
  year: 2023
  ident: D3QI02668J/cit35/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2023.08.344
  contributor:
    fullname: Han
– volume: 10
  start-page: 1587
  year: 2023
  ident: D3QI02668J/cit51/1
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D2QI02389J
  contributor:
    fullname: Liu
– volume: 30
  start-page: 1802121
  year: 2018
  ident: D3QI02668J/cit17/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802121
  contributor:
    fullname: Sun
– volume: 306
  start-page: 121095
  year: 2022
  ident: D3QI02668J/cit40/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.121095
  contributor:
    fullname: Li
– volume: 451
  start-page: 138618
  year: 2023
  ident: D3QI02668J/cit29/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.138618
  contributor:
    fullname: Li
– volume: 145
  start-page: 21419
  year: 2023
  ident: D3QI02668J/cit50/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c06726
  contributor:
    fullname: Zuo
– volume: 19
  start-page: 2300974
  year: 2023
  ident: D3QI02668J/cit27/1
  publication-title: Small
  doi: 10.1002/smll.202300974
  contributor:
    fullname: Thalluri
– volume: 80
  start-page: 105467
  year: 2021
  ident: D3QI02668J/cit48/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105467
  contributor:
    fullname: Wu
– volume: 61
  start-page: e202212196
  year: 2022
  ident: D3QI02668J/cit26/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202212196
  contributor:
    fullname: Zhou
– volume: 12
  start-page: 2200029
  year: 2022
  ident: D3QI02668J/cit34/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202200029
  contributor:
    fullname: Li
– volume: 10
  start-page: 2206029
  year: 2023
  ident: D3QI02668J/cit16/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202206029
  contributor:
    fullname: Yi
– volume: 33
  start-page: 2212321
  year: 2023
  ident: D3QI02668J/cit30/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202212321
  contributor:
    fullname: Wang
– volume: 33
  start-page: 2214375
  issue: 16
  year: 2023
  ident: D3QI02668J/cit44/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202214375
  contributor:
    fullname: Wu
– volume: 12
  start-page: 686
  year: 2019
  ident: D3QI02668J/cit14/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b16626
  contributor:
    fullname: Du
– volume: 59
  start-page: e202011523
  year: 2020
  ident: D3QI02668J/cit45/1
  publication-title: Angew. Chem., Int. Ed.
  contributor:
    fullname: Wu
– volume: 7
  start-page: 799
  issue: 4
  year: 2022
  ident: D3QI02668J/cit52/1
  publication-title: Green Energy Environ.
  doi: 10.1016/j.gee.2021.09.005
  contributor:
    fullname: Wu
– volume: 78
  start-page: 105234
  year: 2020
  ident: D3QI02668J/cit21/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105234
  contributor:
    fullname: Peng
– volume: 272
  start-page: 118976
  year: 2020
  ident: D3QI02668J/cit11/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.118976
  contributor:
    fullname: Huang
– volume: 51
  start-page: 3970
  year: 2022
  ident: D3QI02668J/cit42/1
  publication-title: Dalton Trans.
  doi: 10.1039/D1DT03814A
  contributor:
    fullname: Li
– volume: 10
  start-page: 3675
  year: 2023
  ident: D3QI02668J/cit5/1
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D3QI00519D
  contributor:
    fullname: Li
– volume: 34
  start-page: 107622
  year: 2023
  ident: D3QI02668J/cit37/1
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2022.06.045
  contributor:
    fullname: Li
– volume: 63
  start-page: 2282
  year: 2024
  ident: D3QI02668J/cit22/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.3c04291
  contributor:
    fullname: Li
– volume: 8
  start-page: 5327
  year: 2016
  ident: D3QI02668J/cit19/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b12093
  contributor:
    fullname: Kwak
– volume: 34
  start-page: 2309056
  year: 2024
  ident: D3QI02668J/cit49/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202309056
  contributor:
    fullname: Shen
– volume: 1
  start-page: 51
  issue: 1
  year: 2022
  ident: D3QI02668J/cit24/1
  publication-title: Interdiscip. Mater.
  doi: 10.1002/idm2.12011
  contributor:
    fullname: Zhang
– volume: 4
  start-page: 473
  year: 2021
  ident: D3QI02668J/cit1/1
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-020-00086-z
  contributor:
    fullname: Wu
– volume: 34
  start-page: 2110103
  year: 2022
  ident: D3QI02668J/cit31/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202110103
  contributor:
    fullname: Rong
– volume: 18
  start-page: 2105305
  year: 2022
  ident: D3QI02668J/cit23/1
  publication-title: Small
  doi: 10.1002/smll.202105305
  contributor:
    fullname: Qin
– volume: 134
  start-page: e202115939
  year: 2022
  ident: D3QI02668J/cit28/1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202114951
  contributor:
    fullname: Shah
– start-page: 2310699
  year: 2023
  ident: D3QI02668J/cit39/1
  publication-title: Adv. Mater.
  contributor:
    fullname: Jiang
– volume: 642
  start-page: 604
  year: 2023
  ident: D3QI02668J/cit41/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2023.03.175
  contributor:
    fullname: Ma
– volume: 11
  start-page: 1
  year: 2019
  ident: D3QI02668J/cit12/1
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-018-0235-z
  contributor:
    fullname: Jiang
– volume: 134
  start-page: e202113664
  year: 2022
  ident: D3QI02668J/cit25/1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202113664
  contributor:
    fullname: Cai
– volume: 15
  start-page: 1900248
  year: 2019
  ident: D3QI02668J/cit38/1
  publication-title: Small
  doi: 10.1002/smll.201900248
  contributor:
    fullname: Kou
– volume: 40
  start-page: 1373
  year: 2021
  ident: D3QI02668J/cit13/1
  publication-title: Rare Met.
  doi: 10.1007/s12598-020-01541-y
  contributor:
    fullname: Ding
– volume: 9
  start-page: 27061
  year: 2021
  ident: D3QI02668J/cit43/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA06149F
  contributor:
    fullname: Li
– volume: 312
  start-page: 121434
  year: 2022
  ident: D3QI02668J/cit9/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.121434
  contributor:
    fullname: Xue
– volume: 50
  start-page: 195
  year: 2023
  ident: D3QI02668J/cit7/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(23)64456-0
  contributor:
    fullname: Jun
– volume: 449
  start-page: 137791
  year: 2022
  ident: D3QI02668J/cit15/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137791
  contributor:
    fullname: Yu
– volume: 42
  start-page: 100031
  year: 2023
  ident: D3QI02668J/cit36/1
  publication-title: Chin. J. Struct. Chem.
  doi: 10.1016/j.cjsc.2023.100031
  contributor:
    fullname: Yang
– volume: 34
  start-page: 2104405
  year: 2022
  ident: D3QI02668J/cit18/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202104405
  contributor:
    fullname: Nai
– volume: 32
  start-page: 2203263
  year: 2022
  ident: D3QI02668J/cit47/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202203263
  contributor:
    fullname: Xu
– volume: 10
  start-page: 3102
  year: 2022
  ident: D3QI02668J/cit10/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA07393A
  contributor:
    fullname: Chang
– volume: 13
  start-page: 1270
  year: 2022
  ident: D3QI02668J/cit32/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28947-9
  contributor:
    fullname: Li
– volume: 36
  start-page: 2310699
  issue: 2
  year: 2024
  ident: D3QI02668J/cit4/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202310699
  contributor:
    fullname: Jiang
– volume: 15
  start-page: 227
  issue: 1
  year: 2023
  ident: D3QI02668J/cit2/1
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-023-01192-5
  contributor:
    fullname: Li
– volume: 9
  start-page: 2200307
  year: 2022
  ident: D3QI02668J/cit3/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202200307
  contributor:
    fullname: Liu
– volume: 59
  start-page: 4750
  issue: 32
  year: 2023
  ident: D3QI02668J/cit6/1
  publication-title: Chem. Commun.
  doi: 10.1039/D2CC06727G
  contributor:
    fullname: Li
– volume: 12
  start-page: 21850
  year: 2020
  ident: D3QI02668J/cit46/1
  publication-title: Nanoscale
  doi: 10.1039/D0NR05250G
  contributor:
    fullname: Jin
– volume: 1
  start-page: 28
  issue: 1
  year: 2022
  ident: D3QI02668J/cit33/1
  publication-title: Interdiscip. Mater.
  doi: 10.1002/idm2.12010
  contributor:
    fullname: Paul
SSID ssj0001140160
ssib020509107
Score 2.3548203
Snippet The rising demand for sustainable hydrogen production has led to intensified research into alternative catalysts for the Hydrogen Evolution Reaction (HER)....
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Publisher
StartPage 1733
SubjectTerms Catalysts
Electrolysis
Electronic structure
Gibbs free energy
Hydrogen
Hydrogen evolution reactions
Hydrogen production
Metal foams
Nickel
Ruthenium
Selenium
Water chemistry
Title High-density accessible Ru-Se-Ni moieties boost the hydrogen evolution reaction by optimizing H absorption
URI https://www.proquest.com/docview/2955226156
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1da9swFIbF2t7sZmx0ZdnaIejujDfbsuTosnQdbljLtqbQO2N9eHWgcZc4g_TX98iWrBQ6WAvBBDs2QY9y9B7lfCD0yUhsLhkQyDgP0zImIYd1AnwerTJFkzGlJsH57Jzll-nkil75sOYuu6QVn-Xdo3klz6EK54CryZJ9AtnhoXAC3gNfOAJhOP4XYxOkESoTgg5SuuxaH9YmE-rXKrzQ4Xkd3DS1NhVTA9DSyy5rMbheq0Xz29T2_2u_WwC6sW8YDlK0ARNyU9-ZDYQ8KMWyWdwO6GYu6r1vBSUD6brFmSyVeVtr_9fQWSdKL65XpV0ajWWxe9M_dL2u_eljt2c9qYeZOuxj59p-0O5MJKkJzbIx0bqzYElEk9A0JnpgbuONabVpO-OsL4lh12FwleJHbXxETIlURf7U4D-y8cyvZEN8ob-4hXZgFhKwfTtHJ9PT737_zXiWLHIVawn_4m96qFG847G1cF1hOvUxfY1eWbcBH_Vz4A16oee7aLbJH3v-2PHHjj_u-GPgjx1_PPDHjj8Wa-z54xx7_m_R5beT6XEe2t4ZoQSN1oZpqknJMiWjVINEq7KEyUpHTIN_yKmMBbjdPBIq1rwilKhKMM6U0GNwB0pFErKHtufNXL9DWMkkZlVa8lTCi8XwWJDNNJElp4IKPUKHbrSK275EStGFNhBefCU_T7sxnYzQvhvIwv6ElkXCqdH_MWUjtAeDO9zvWbz_14UP6KWfdPtou12s9AEIxFZ8tKzvAa3jbNo
link.rule.ids 315,783,787,27936,27937
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-density+accessible+Ru-Se-Ni+moieties+boost+the+hydrogen+evolution+reaction+by+optimizing+H+absorption&rft.jtitle=Inorganic+chemistry+frontiers&rft.au=Ma%2C+Shuang&rft.au=Yang%2C+Peiying&rft.au=Chang%2C+Jin&rft.au=Zhang%2C+Heng&rft.date=2024-03-12&rft.eissn=2052-1553&rft.volume=11&rft.issue=6&rft.spage=1733&rft.epage=1741&rft_id=info:doi/10.1039%2Fd3qi02668j&rft.externalDocID=d3qi02668j
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-1553&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-1553&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-1553&client=summon