Ultraviolet Absorption Induces Hydrogen-Atom Transfer in G⋅C Watson-Crick DNA Base Pairs in Solution

Ultrafast deactivation pathways bestow photostability on nucleobases and hence preserve the structural integrity of DNA following absorption of ultraviolet (UV) radiation. One controversial recovery mechanism proposed to account for this photostability involves electron‐driven proton transfer (EDPT)...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie Vol. 127; no. 49; pp. 14932 - 14935
Main Authors Röttger, Katharina, Marroux, Hugo J. B., Grubb, Michael P., Coulter, Philip M., Böhnke, Hendrik, Henderson, Alexander S., Galan, M. Carmen, Temps, Friedrich, Orr-Ewing, Andrew J., Roberts, Gareth M.
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 01.12.2015
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ultrafast deactivation pathways bestow photostability on nucleobases and hence preserve the structural integrity of DNA following absorption of ultraviolet (UV) radiation. One controversial recovery mechanism proposed to account for this photostability involves electron‐driven proton transfer (EDPT) in Watson–Crick base pairs. The first direct observation is reported of the EDPT process after UV excitation of individual guanine–cytosine (G⋅C) Watson–Crick base pairs by ultrafast time‐resolved UV/visible and mid‐infrared spectroscopy. The formation of an intermediate biradical species (G[−H]⋅C[+H]) with a lifetime of 2.9 ps was tracked. The majority of these biradicals return to the original G⋅C Watson–Crick pairs, but up to 10 % of the initially excited molecules instead form a stable photoproduct G*⋅C* that has undergone double hydrogen‐atom transfer. The observation of these sequential EDPT mechanisms across intermolecular hydrogen bonds confirms an important and long debated pathway for the deactivation of photoexcited base pairs, with possible implications for the UV photochemistry of DNA. Aufgrund ultraschneller Energiedissipationsprozesse nach UV‐Absorption ist DNA intrinsisch photostabil. Einer der meist diskutierten Mechanismen in einzelnen Guanin‐Cytosin‐Basenpaaren wurde jetzt bestätigt: Eine Kette von Wasserstofftransfers über die H‐Bindungen im Dimer führt zur effizienten Relaxation des Basenpaares zur ursprünglichen Struktur, allerdings bilden bis zu 10 % der angeregten Moleküle stattdessen möglicherweise mutagene Tautomere.
Bibliography:DFG
ArticleID:ANGE201506940
EPSRC - No. CAF EP/J002542/1; No. CDT EP/G036764/1
istex:5BC2355917D3B96225FD86A518DB35AAC129F070
ark:/67375/WNG-PXMCDS7T-R
Ramsay Memorial Trust
ERC - No. 290966
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.201506940