Bionic design of thin-walled bilinear tubes with excellent crashworthiness inspired by glass sponge structures

Abstract In order to enhance energy absorption, this study draws inspiration from the diagonal bilinear robust square lattice structure found in deep-sea glass sponges, proposing a design for thin-walled structures with superior folding capabilities and high strength-to-weight ratio. Firstly, the cr...

Full description

Saved in:
Bibliographic Details
Published inBioinspiration & biomimetics Vol. 19; no. 4; pp. 46018 - 46036
Main Authors Liu, Yansong, Zou, Meng, Qi, Yingchun, Chen, Lining, Wang, Zhaoyang, Song, Jiafeng, He, Lianbin
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract In order to enhance energy absorption, this study draws inspiration from the diagonal bilinear robust square lattice structure found in deep-sea glass sponges, proposing a design for thin-walled structures with superior folding capabilities and high strength-to-weight ratio. Firstly, the crashworthiness of bionic glass sponge tube (BGSTO) is compared with that of equal-wall-thickness equal-mass four-X tube through both experiments and simulations, and it is obtained that the specific energy absorption of BGSTO is increased by 78.64%. And the crashworthiness of BGSTO is also most significant compared to that of multicellular tubes with the similar number of crystalline cells. Additionally, we found that the double-line spacing of the glass sponge can be freely adjusted without changing the material amount. Therefore, based on BGSTO, we designed two other double-line structures, BGSTA and BGSTB. Then with equal wall thickness and mass as a prerequisite, this study proceeds to design and compare the energy absorption properties of three bilinear thin-walled tubes in both axial and lateral cases. The deformation modes and crashworthiness of the three types of tubes with variable bilinear spacing ( β O/A/B ) are comparatively analysed. The improved complex proportional assessment (COPRAS) synthesis decision is used to obtain that BGSTO exhibits superior crashworthiness over the remaining two kinds of tubes. Finally, a surrogate model is established to perform multi-objective optimization on the optimal bilinear configuration BGSTO selected by the COPRAS method.
Bibliography:BB-103791.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1748-3182
1748-3190
1748-3190
DOI:10.1088/1748-3190/ad580a