Ras-mediated dynamic and biphasic regulation of cell migration
Ras has traditionally been regarded as a positive regulator and therapeutic target due to its role in cell proliferation, but recent findings indicate a more nuanced role in cell migration, where suppressed Ras activity can unexpectedly promote migration. To clarify this complexity, we systematicall...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 122; no. 30; p. e2503847122 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
29.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Ras has traditionally been regarded as a positive regulator and therapeutic target due to its role in cell proliferation, but recent findings indicate a more nuanced role in cell migration, where suppressed Ras activity can unexpectedly promote migration. To clarify this complexity, we systematically modulate Ras activity using various RasGEF and RasGAP proteins and assess their effects on migration dynamics. Leveraging optogenetics, we assess the immediate, nontranscriptional effects of Ras signaling on migration. Local RasGEF recruitment to the plasma membrane induces protrusions and new fronts to effectively guide migration, even in the absence of GPCR/G-protein signaling, whereas global recruitment causes immediate cell spreading halting cell migration. Local RasGAP recruitment suppresses protrusions, generates new backs, and repels cells, whereas global relocation either eliminates all protrusions to inhibit migration or preserves a single protrusion to maintain polarity. Consistent local and global increases or decreases in signal transduction and cytoskeletal activities accompany these morphological changes. Additionally, we performed cortical tension measurements and found that Ras activity is regulated by guanine nucleotide exchange factors generally increase cortical tension while Ras activity is regulated by GTPase-activating proteins decrease it. Our results reveal a biphasic relationship between Ras activity and cellular dynamics, reinforcing our previous findings that optimal Ras activity and cortical tension are critical for efficient migration. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0027-8424 1091-6490 1091-6490 |
DOI: | 10.1073/pnas.2503847122 |