ZnO-ZnMgO Multiple Quantum-Well Ridge Waveguide Lasers
ZnO-ZnMgO multiple quantum-well (MQW) thin-film waveguides with ridge structures have been fabricated on quartz substrates. Low-temperature deposition of high-quality ZnO-ZnMgO MQW thin films was achieved by filtered cathodic vacuum arc technique. A ridge is defined on the thin film by plasma etchin...
Saved in:
Published in | IEEE photonics technology letters Vol. 21; no. 21; pp. 1624 - 1626 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | ZnO-ZnMgO multiple quantum-well (MQW) thin-film waveguides with ridge structures have been fabricated on quartz substrates. Low-temperature deposition of high-quality ZnO-ZnMgO MQW thin films was achieved by filtered cathodic vacuum arc technique. A ridge is defined on the thin film by plasma etching. Room-temperature lasing with a peak wavelength at 378 nm of 1.5-nm well width was observed under 355-nm optical excitation. Exciton-exciton scattering was attributed to the amplified spontaneous emission observed from the MQW waveguide. The net optical gain can be larger than 80 cm -1 at a pump intensity of 2 MW/cm 2 . |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1041-1135 1941-0174 |
DOI: | 10.1109/LPT.2009.2031089 |