Understanding Traumatic Brain Injuries in Military Personnel: Investigating the Dynamic Interplay of the Cerebrospinal Fluid and Brain During Blasts

Background It is estimated that around 450,000 traumatic brain injury cases have occurred in the 21st century with possible under-reporting. Computational simulations are increasingly used to study the pathophysiology of traumatic brain injuries among US military personnel. This approach allows for...

Full description

Saved in:
Bibliographic Details
Published inCurēus (Palo Alto, CA) Vol. 15; no. 10; p. e46962
Main Authors Frankini, Elisabeth, Basile, Eric J, Syed, Faiz, Wei, Ong Chi, Toma, Milan
Format Journal Article
LanguageEnglish
Published 13.10.2023
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background It is estimated that around 450,000 traumatic brain injury cases have occurred in the 21st century with possible under-reporting. Computational simulations are increasingly used to study the pathophysiology of traumatic brain injuries among US military personnel. This approach allows for investigation without ethical concerns surrounding live subject testing. Methodology The pertinent data on head acceleration is applied to a detailed 3D model of a patient-specific head, which encompasses all significant components of the brain and its surrounding fluid. The use of finite element analysis and smoothed-particle hydrodynamics serves to replicate the interaction between these elements during discharge through simulation of their fluid-structure dynamics. Results The stress levels of the brain are assessed at varying time intervals subsequent to the explosion. The regions where there is an intersection between the skull and brain are observed, along with the predominant orientations in which displacement of the brain occurs resulting in a brain injury. Conclusions It has been determined that the cerebrospinal fluid is inadequate in preventing brain damage caused by multiple abrupt directional shifts of the head. Accordingly, additional research must be undertaken to enhance our comprehension of the injury mechanisms linked with consecutive changes in acceleration impacting the head.Background It is estimated that around 450,000 traumatic brain injury cases have occurred in the 21st century with possible under-reporting. Computational simulations are increasingly used to study the pathophysiology of traumatic brain injuries among US military personnel. This approach allows for investigation without ethical concerns surrounding live subject testing. Methodology The pertinent data on head acceleration is applied to a detailed 3D model of a patient-specific head, which encompasses all significant components of the brain and its surrounding fluid. The use of finite element analysis and smoothed-particle hydrodynamics serves to replicate the interaction between these elements during discharge through simulation of their fluid-structure dynamics. Results The stress levels of the brain are assessed at varying time intervals subsequent to the explosion. The regions where there is an intersection between the skull and brain are observed, along with the predominant orientations in which displacement of the brain occurs resulting in a brain injury. Conclusions It has been determined that the cerebrospinal fluid is inadequate in preventing brain damage caused by multiple abrupt directional shifts of the head. Accordingly, additional research must be undertaken to enhance our comprehension of the injury mechanisms linked with consecutive changes in acceleration impacting the head.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2168-8184
2168-8184
DOI:10.7759/cureus.46962