Quantum-level investigation of air decomposed pollutants gas sensor (Pd-modified g-C3N4) influenced by micro-water content

In the electrical industry, there are many hazardous gases that pollute the environment and even jeopardize human health, so timely detection and effective control of these hazardous gases is of great significance. In this work, the gas-sensitive properties of Pd-modified g-C3N4 interface for each h...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 358; p. 142198
Main Authors Jia, Pengfei, Wang, Mingxiang, Ma, Changyou, Chen, Dachang, Zhang, Yiyi, Liu, Jiefeng
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the electrical industry, there are many hazardous gases that pollute the environment and even jeopardize human health, so timely detection and effective control of these hazardous gases is of great significance. In this work, the gas-sensitive properties of Pd-modified g-C3N4 interface for each hazardous gas molecule were investigated from a microscopic viewpoint, taking the hazardous gases (CO, NOx) that may be generated in the power industry as the detection target. Then, the performance of Pd-modifiedg-C3N4 was evaluated for practical applications as a gas sensor material. Novelly, an unconventional means was designed to briefly predict the effect of humidity on the adsorption properties of this sensor material. The final results found that Pd-modified g-C3N4 is most suitable as a potential gas-sensitizing material for NO2 gas sensors, followed by CO. Interestingly, Pd-modified g-C3N4 is less suitable as a potential gas-sensitizing material for NO gas sensors, but has the potential to be used as a NO cleaner (adsorbent). Unconventional simulation explorations of humidity effects show that in practical applications Pd-modified g-C3N4 remains a promising material for gas sensing in specific humidity environments. This work reveals the origin of the excellent properties of Pd-modified g-C3N4 as a gas sensor material and provides new ideas for the detection and treatment of these three hazardous gases. [Display omitted] •The sensing properties of Pd-modified g-C3N4 interface were evaluated for CO, NOx.•A new experiment for the prediction of humidity-influenced interface performance was designed.•This work enriches new schemes for the preparation of g–C3N4–based gas sensors.•This work provides new ideas for addressing hazardous gases generated in the electrical industry.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2024.142198