Microstructure and mechanical behaviour of additive manufactured Ti–6Al–4V parts under tension

Metal-based additive manufacturing technologies using electron or laser beams as a heat source for melting a metal powder or wire have been the subject of keen interest in recent years. At present paper a comparative analysis of the microstructure, strain response during tensile test and mechanical...

Full description

Saved in:
Bibliographic Details
Published inEPJ Web of conferences Vol. 221; p. 1037
Main Authors Panin, Alexey, Kazachenok, Marina, Kolmakov, Alexey, Chizhik, Sergey, Heifetz, Mikhail, Chugui, Yuri
Format Journal Article Conference Proceeding
LanguageEnglish
Published Les Ulis EDP Sciences 2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Metal-based additive manufacturing technologies using electron or laser beams as a heat source for melting a metal powder or wire have been the subject of keen interest in recent years. At present paper a comparative analysis of the microstructure, strain response during tensile test and mechanical properties of Ti–6Al–4V samples produced by selective laser melting, electron beam melting or electron beam free-form fabrication were performed. A microstructural study using transmission electron microscopy revealed columnar prior β grains transformed into a lamellar α-morphology in the samples. According to X-ray diffraction study, the volume fractions of the β-Ti phase in the samples were equal to 2, 4 and 6 % respectively. It has been shown that the Vickers microhardness of SLM and EBM Ti–6Al–4V samples was similar (~5.4 GPa) while the hardness of EBF 3 parts was significantly lower (4.5 GPa). The uniaxial stress-strain response of the Ti–6Al–4V samples fabricated by different additive manufacturing technologies were compared. Crystallographic (dislocation motion) and non-crystallographic (shear banding) deformation mechanisms of the loaded samples were studied by scanning electron microscopy and optical profilometry.
Bibliography:ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
ISSN:2100-014X
2101-6275
2100-014X
DOI:10.1051/epjconf/201922101037