Deep Feature Selection of Meteorological Variables for LSTM-Based PV Power Forecasting in High-Dimensional Time-Series Data
Accurate photovoltaic (PV) power forecasting is essential for grid integration, particularly in maritime climates with dynamic weather patterns. This study addresses high-dimensional meteorological data challenges by systematically evaluating 32 variables across four categories (solar irradiance, te...
Saved in:
Published in | Algorithms Vol. 18; no. 8; p. 496 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1999-4893 1999-4893 |
DOI | 10.3390/a18080496 |
Cover
Loading…
Summary: | Accurate photovoltaic (PV) power forecasting is essential for grid integration, particularly in maritime climates with dynamic weather patterns. This study addresses high-dimensional meteorological data challenges by systematically evaluating 32 variables across four categories (solar irradiance, temperature, atmospheric, hydrometeorological) for day-ahead PV forecasting using long short-term memory (LSTM) networks. Using six years of data from a 350 kWp solar farm in Scotland, we compare satellite-derived data and local weather station measurements. Surprisingly, downward thermal infrared flux—capturing persistent atmospheric moisture and cloud properties in maritime climates—emerged as the most influential predictor despite low correlation (1.93%). When paired with precipitation data, this two-variable combination achieved 99.81% R2, outperforming complex multi-variable models. Satellite data consistently surpassed ground measurements, with 9 of the top 10 predictors being satellite derived. Our approach reduces model complexity while improving forecasting accuracy, providing practical solutions for energy systems. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1999-4893 1999-4893 |
DOI: | 10.3390/a18080496 |