Deep Feature Selection of Meteorological Variables for LSTM-Based PV Power Forecasting in High-Dimensional Time-Series Data

Accurate photovoltaic (PV) power forecasting is essential for grid integration, particularly in maritime climates with dynamic weather patterns. This study addresses high-dimensional meteorological data challenges by systematically evaluating 32 variables across four categories (solar irradiance, te...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms Vol. 18; no. 8; p. 496
Main Authors Mauladdawilah, Husein, Balfaqih, Mohammed, Balfagih, Zain, Pegalajar, María del Carmen, Gago, Eulalia Jadraque
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2025
Subjects
Online AccessGet full text
ISSN1999-4893
1999-4893
DOI10.3390/a18080496

Cover

Loading…
More Information
Summary:Accurate photovoltaic (PV) power forecasting is essential for grid integration, particularly in maritime climates with dynamic weather patterns. This study addresses high-dimensional meteorological data challenges by systematically evaluating 32 variables across four categories (solar irradiance, temperature, atmospheric, hydrometeorological) for day-ahead PV forecasting using long short-term memory (LSTM) networks. Using six years of data from a 350 kWp solar farm in Scotland, we compare satellite-derived data and local weather station measurements. Surprisingly, downward thermal infrared flux—capturing persistent atmospheric moisture and cloud properties in maritime climates—emerged as the most influential predictor despite low correlation (1.93%). When paired with precipitation data, this two-variable combination achieved 99.81% R2, outperforming complex multi-variable models. Satellite data consistently surpassed ground measurements, with 9 of the top 10 predictors being satellite derived. Our approach reduces model complexity while improving forecasting accuracy, providing practical solutions for energy systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1999-4893
1999-4893
DOI:10.3390/a18080496