Deep Feature Selection of Meteorological Variables for LSTM-Based PV Power Forecasting in High-Dimensional Time-Series Data

Accurate photovoltaic (PV) power forecasting is essential for grid integration, particularly in maritime climates with dynamic weather patterns. This study addresses high-dimensional meteorological data challenges by systematically evaluating 32 variables across four categories (solar irradiance, te...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms Vol. 18; no. 8; p. 496
Main Authors Mauladdawilah, Husein, Balfaqih, Mohammed, Balfagih, Zain, Pegalajar, María del Carmen, Gago, Eulalia Jadraque
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2025
Subjects
Online AccessGet full text
ISSN1999-4893
1999-4893
DOI10.3390/a18080496

Cover

Loading…
Abstract Accurate photovoltaic (PV) power forecasting is essential for grid integration, particularly in maritime climates with dynamic weather patterns. This study addresses high-dimensional meteorological data challenges by systematically evaluating 32 variables across four categories (solar irradiance, temperature, atmospheric, hydrometeorological) for day-ahead PV forecasting using long short-term memory (LSTM) networks. Using six years of data from a 350 kWp solar farm in Scotland, we compare satellite-derived data and local weather station measurements. Surprisingly, downward thermal infrared flux—capturing persistent atmospheric moisture and cloud properties in maritime climates—emerged as the most influential predictor despite low correlation (1.93%). When paired with precipitation data, this two-variable combination achieved 99.81% R2, outperforming complex multi-variable models. Satellite data consistently surpassed ground measurements, with 9 of the top 10 predictors being satellite derived. Our approach reduces model complexity while improving forecasting accuracy, providing practical solutions for energy systems.
AbstractList Accurate photovoltaic (PV) power forecasting is essential for grid integration, particularly in maritime climates with dynamic weather patterns. This study addresses high-dimensional meteorological data challenges by systematically evaluating 32 variables across four categories (solar irradiance, temperature, atmospheric, hydrometeorological) for day-ahead PV forecasting using long short-term memory (LSTM) networks. Using six years of data from a 350 kWp solar farm in Scotland, we compare satellite-derived data and local weather station measurements. Surprisingly, downward thermal infrared flux—capturing persistent atmospheric moisture and cloud properties in maritime climates—emerged as the most influential predictor despite low correlation (1.93%). When paired with precipitation data, this two-variable combination achieved 99.81% R[sup.2], outperforming complex multi-variable models. Satellite data consistently surpassed ground measurements, with 9 of the top 10 predictors being satellite derived. Our approach reduces model complexity while improving forecasting accuracy, providing practical solutions for energy systems.
Accurate photovoltaic (PV) power forecasting is essential for grid integration, particularly in maritime climates with dynamic weather patterns. This study addresses high-dimensional meteorological data challenges by systematically evaluating 32 variables across four categories (solar irradiance, temperature, atmospheric, hydrometeorological) for day-ahead PV forecasting using long short-term memory (LSTM) networks. Using six years of data from a 350 kWp solar farm in Scotland, we compare satellite-derived data and local weather station measurements. Surprisingly, downward thermal infrared flux—capturing persistent atmospheric moisture and cloud properties in maritime climates—emerged as the most influential predictor despite low correlation (1.93%). When paired with precipitation data, this two-variable combination achieved 99.81% R2, outperforming complex multi-variable models. Satellite data consistently surpassed ground measurements, with 9 of the top 10 predictors being satellite derived. Our approach reduces model complexity while improving forecasting accuracy, providing practical solutions for energy systems.
Audience Academic
Author Balfagih, Zain
Pegalajar, María del Carmen
Gago, Eulalia Jadraque
Mauladdawilah, Husein
Balfaqih, Mohammed
Author_xml – sequence: 1
  givenname: Husein
  orcidid: 0000-0002-2828-6173
  surname: Mauladdawilah
  fullname: Mauladdawilah, Husein
– sequence: 2
  givenname: Mohammed
  orcidid: 0000-0002-6498-2408
  surname: Balfaqih
  fullname: Balfaqih, Mohammed
– sequence: 3
  givenname: Zain
  surname: Balfagih
  fullname: Balfagih, Zain
– sequence: 4
  givenname: María del Carmen
  orcidid: 0000-0001-9408-6770
  surname: Pegalajar
  fullname: Pegalajar, María del Carmen
– sequence: 5
  givenname: Eulalia Jadraque
  orcidid: 0000-0002-3547-2003
  surname: Gago
  fullname: Gago, Eulalia Jadraque
BookMark eNpNkUFrGzEQhUVJoUnaQ_-BoKceNpVWK1k6pnGdBBwasJurmJVGW5n1ypXWlNI_H7UuocxhHsObjxneBTmb0oSEvOfsSgjDPgHXTLPOqFfknBtjmk4bcfaffkMuStkxpqRR_Jz8XiIe6AphPmakGxzRzTFNNAX6gDOmnMY0RAcjfYIcoR-x0JAyXW-2D81nKOjp4xN9TD8x01XK6KDMcRponOhdHL43y7jHqVRiJWyrbjaYY2UsYYa35HWAseC7f_2SfFt92d7cNeuvt_c31-vGtUKpRgbNQXmHXre-ik5y1XumQ8eV9r3ozAJ1L5ju--rAToNULjhvtJAgtRSX5P7E9Ql29pDjHvIvmyDav4OUBwt5jm5Ea5wzixakR-061F73DA3TMvQLphTXlfXhxDrk9OOIZba7dMz1u2JF2wmjpG4X1XV1cg1QoXEKac7ganncR1cTC7HOr-ttijEpRV34eFpwOZWSMbycyZn9E6x9CVY8A7jNlhI
Cites_doi 10.1016/j.epsr.2022.108796
10.1016/j.energy.2021.122116
10.1016/j.egyr.2020.11.238
10.1016/j.egyr.2022.11.208
10.18086/swc.2015.07.06
10.3390/en16134857
10.1007/s00202-023-01883-7
10.1109/ICCIT58132.2023.10273892
10.1016/j.heliyon.2024.e33419
10.1016/j.energy.2016.08.068
10.1109/LT64002.2025.10941436
10.1016/j.ijthermalsci.2023.108672
10.1016/j.energy.2021.120996
10.1016/j.epsr.2022.107908
10.1016/j.energy.2014.01.024
10.1016/j.energy.2016.08.060
10.1016/j.renene.2023.118997
10.1016/j.apenergy.2020.116239
10.3390/atmos12010124
10.1016/j.rser.2022.112364
10.1016/j.renene.2020.01.150
10.1162/neco.1997.9.8.1735
10.1109/ICCIT63348.2025.10989356
10.1016/j.renene.2019.12.131
10.1016/j.ijforecast.2006.03.001
10.1109/PVSC40753.2019.8981308
10.5194/gmd-7-1247-2014
10.3390/su151411299
10.54963/neea.v2i2.170
10.1016/j.solener.2021.04.004
10.1109/ACCESS.2024.3420693
10.1109/ASET53988.2022.9734967
10.1109/ICDSE.2016.7823957
10.1016/j.egypro.2013.05.072
10.3390/app11010316
10.1007/s12145-023-01066-9
10.1016/j.renene.2024.120437
10.3390/en13040930
10.7717/peerj-cs.623
10.1016/S0169-2070(96)00719-4
10.2514/6.2022-1101
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOA
DOI 10.3390/a18080496
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_9cc972a5de8c4e8d8b0e9085fb706618
A853600553
10_3390_a18080496
GeographicLocations United Kingdom
New Jersey
GeographicLocations_xml – name: United Kingdom
– name: New Jersey
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
TR2
TUS
PUEGO
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c2366-5f81a6dced82da6d4516bd08f4168db3497e8b308bbd82e48a56cfcd9835a5853
IEDL.DBID 8FG
ISSN 1999-4893
IngestDate Mon Sep 01 19:39:27 EDT 2025
Wed Aug 27 12:54:55 EDT 2025
Tue Sep 02 04:00:06 EDT 2025
Thu Aug 14 00:05:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2366-5f81a6dced82da6d4516bd08f4168db3497e8b308bbd82e48a56cfcd9835a5853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6498-2408
0000-0001-9408-6770
0000-0002-2828-6173
0000-0002-3547-2003
OpenAccessLink https://www.proquest.com/docview/3243965827?pq-origsite=%requestingapplication%
PQID 3243965827
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_9cc972a5de8c4e8d8b0e9085fb706618
proquest_journals_3243965827
gale_infotracacademiconefile_A853600553
crossref_primary_10_3390_a18080496
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Algorithms
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Mauladdawilah (ref_43) 2025; Volume 22
Markovics (ref_5) 2022; 161
Zhang (ref_12) 2022; 213
Hyndman (ref_37) 2006; 22
ref_14
ref_11
Chai (ref_36) 2014; 7
Mbuli (ref_31) 2020; 6
Chicco (ref_38) 2021; 7
ref_30
ref_19
Husein (ref_35) 2024; 10
Galarza (ref_9) 2022; 239
Mayer (ref_3) 2021; 283
ref_39
ref_16
Staffell (ref_25) 2016; 114
Asghar (ref_18) 2024; 12
Sharadga (ref_4) 2020; 150
Harvey (ref_44) 1997; 13
AlSkaif (ref_13) 2020; 153
Bahanni (ref_17) 2022; 25
Muneer (ref_23) 2022; 2
Hochreiter (ref_33) 1997; 9
Ziane (ref_2) 2021; 220
Dubey (ref_28) 2013; 33
Agga (ref_10) 2022; 208
Grzebyk (ref_7) 2023; 9
ref_21
ref_20
ref_42
ref_41
Bai (ref_8) 2023; 16
ref_1
Qu (ref_40) 2021; 232
Garip (ref_34) 2023; 105
Liu (ref_32) 2024; 226
Saglam (ref_15) 2010; 9
ref_29
Chenlo (ref_27) 2014; 67
ref_26
Villemin (ref_22) 2024; 195
Pfenninger (ref_24) 2016; 114
Sarmas (ref_6) 2023; 216
References_xml – volume: 213
  start-page: 108796
  year: 2022
  ident: ref_12
  article-title: A novel integrated photovoltaic power forecasting model based on variational mode decomposition and CNN-BiGRU considering meteorological variables
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2022.108796
– volume: 239
  start-page: 122116
  year: 2022
  ident: ref_9
  article-title: Using deep learning and meteorological parameters to forecast the photovoltaic generators intra-hour output power interval for smart grid control
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122116
– volume: 6
  start-page: 298
  year: 2020
  ident: ref_31
  article-title: Decomposition forecasting methods: A review of applications in power systems
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2020.11.238
– volume: 9
  start-page: 447
  year: 2023
  ident: ref_7
  article-title: Trends and gaps in photovoltaic power forecasting with machine learning
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.11.208
– ident: ref_21
  doi: 10.18086/swc.2015.07.06
– ident: ref_26
– ident: ref_29
  doi: 10.3390/en16134857
– volume: 105
  start-page: 3329
  year: 2023
  ident: ref_34
  article-title: Day-ahead solar photovoltaic energy forecasting based on weather data using LSTM networks: A comparative study for photovoltaic (PV) panels in Turkey
  publication-title: Electr. Eng.
  doi: 10.1007/s00202-023-01883-7
– ident: ref_11
  doi: 10.1109/ICCIT58132.2023.10273892
– volume: 10
  start-page: e33419
  year: 2024
  ident: ref_35
  article-title: Towards energy efficiency: A comprehensive review of deep learning-based photovoltaic power forecasting strategies
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e33419
– volume: 114
  start-page: 1224
  year: 2016
  ident: ref_25
  article-title: Using bias-corrected reanalysis to simulate current and future wind power output
  publication-title: Energy
  doi: 10.1016/j.energy.2016.08.068
– volume: Volume 22
  start-page: 109
  year: 2025
  ident: ref_43
  article-title: Optimization of Photovoltaic Power Forecasting: A Comparative Study of Deep Learning Architectures, Optimization Techniques, and Evaluation Metrics
  publication-title: Proceedings of the 2025 22nd International Learning and Technology Conference (L&T)
  doi: 10.1109/LT64002.2025.10941436
– volume: 25
  start-page: 1275
  year: 2022
  ident: ref_17
  article-title: Performance comparison and impact of weather conditions on different photovoltaic modules in two different cities
  publication-title: Indones. J. Electr. Eng. Comput. Sci.
– volume: 9
  start-page: 637
  year: 2010
  ident: ref_15
  article-title: Meteorological parameters effects on solar energy power generation
  publication-title: WSEAS Trans. Circuits Syst.
– volume: 195
  start-page: 108672
  year: 2024
  ident: ref_22
  article-title: Monte Carlo prediction of the energy performance of a photovoltaic panel using detailed meteorological input data
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2023.108672
– volume: 232
  start-page: 120996
  year: 2021
  ident: ref_40
  article-title: Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120996
– volume: 208
  start-page: 107908
  year: 2022
  ident: ref_10
  article-title: CNN-LSTM: An efficient hybrid deep learning architecture for predicting short-term photovoltaic power production
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2022.107908
– volume: 67
  start-page: 435
  year: 2014
  ident: ref_27
  article-title: Analysis of spectral effects on the energy yield of different PV (photovoltaic) technologies: The case of four specific sites
  publication-title: Energy
  doi: 10.1016/j.energy.2014.01.024
– volume: 114
  start-page: 1251
  year: 2016
  ident: ref_24
  article-title: Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data
  publication-title: Energy
  doi: 10.1016/j.energy.2016.08.060
– volume: 216
  start-page: 118997
  year: 2023
  ident: ref_6
  article-title: Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent Long Short-Term Memory models
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2023.118997
– volume: 283
  start-page: 116239
  year: 2021
  ident: ref_3
  article-title: Extensive comparison of physical models for photovoltaic power forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.116239
– ident: ref_41
  doi: 10.3390/atmos12010124
– volume: 161
  start-page: 112364
  year: 2022
  ident: ref_5
  article-title: Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2022.112364
– volume: 153
  start-page: 12
  year: 2020
  ident: ref_13
  article-title: A systematic analysis of meteorological variables for PV output power estimation
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.01.150
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_33
  article-title: Long Short-Term Memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref_42
  doi: 10.1109/ICCIT63348.2025.10989356
– volume: 150
  start-page: 797
  year: 2020
  ident: ref_4
  article-title: Time series forecasting of solar power generation for large-scale photovoltaic plants
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.12.131
– volume: 22
  start-page: 679
  year: 2006
  ident: ref_37
  article-title: Another look at measures of forecast accuracy
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2006.03.001
– ident: ref_20
  doi: 10.1109/PVSC40753.2019.8981308
– volume: 7
  start-page: 1247
  year: 2014
  ident: ref_36
  article-title: Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-7-1247-2014
– ident: ref_19
  doi: 10.3390/su151411299
– volume: 2
  start-page: 30
  year: 2022
  ident: ref_23
  article-title: Assessing the Energy Generation and Economics of Combined Solar PV and Wind Turbine-Based Systems with and without Energy Storage—Scottish Perspective
  publication-title: New Energy Exploit. Appl.
  doi: 10.54963/neea.v2i2.170
– volume: 220
  start-page: 745
  year: 2021
  ident: ref_2
  article-title: Photovoltaic output power performance assessment and forecasting: Impact of meteorological variables
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2021.04.004
– volume: 12
  start-page: 90461
  year: 2024
  ident: ref_18
  article-title: Artificial neural networks for photovoltaic power forecasting: A review of five promising models
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3420693
– ident: ref_16
  doi: 10.1109/ASET53988.2022.9734967
– ident: ref_30
  doi: 10.1109/ICDSE.2016.7823957
– volume: 33
  start-page: 311
  year: 2013
  ident: ref_28
  article-title: Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World–A Review
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2013.05.072
– ident: ref_39
  doi: 10.3390/app11010316
– volume: 16
  start-page: 2741
  year: 2023
  ident: ref_8
  article-title: Accurate four-hour-ahead probabilistic forecast of photovoltaic power generation based on multiple meteorological variables-aided intelligent optimization of numeric weather prediction data
  publication-title: Earth Sci. Inform.
  doi: 10.1007/s12145-023-01066-9
– volume: 226
  start-page: 120437
  year: 2024
  ident: ref_32
  article-title: Short-term photovoltaic power forecasting with feature extraction and attention mechanisms
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2024.120437
– ident: ref_1
  doi: 10.3390/en13040930
– volume: 7
  start-page: e623
  year: 2021
  ident: ref_38
  article-title: The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.623
– volume: 13
  start-page: 281
  year: 1997
  ident: ref_44
  article-title: Testing the equality of prediction mean squared errors
  publication-title: Int. J. Forecast.
  doi: 10.1016/S0169-2070(96)00719-4
– ident: ref_14
  doi: 10.2514/6.2022-1101
SSID ssj0065961
Score 2.345191
Snippet Accurate photovoltaic (PV) power forecasting is essential for grid integration, particularly in maritime climates with dynamic weather patterns. This study...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 496
SubjectTerms Accuracy
Algorithms
Alternative energy sources
Artificial intelligence
Atmospheric moisture
Climate
Complexity
Correlation analysis
deep learning
Efficiency
Feature selection
Forecasting
Ground stations
Humidity
Hydrometeorology
International economic relations
Irradiance
long short-term memory
Machine learning
mean absolute
Meteorological data
Meteorological research
meteorological variables
Photovoltaic cells
Radiation
Research methodology
Solar energy
Solar energy industry
Solar farms
Solar power generation
Statistical methods
Variables
Weather stations
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSywxEA7iyYv6XHDUJ0EET8Hesh31jSLiiOCCt5ClAl5mZGY8-eet6kW8yLt4a5rQFFVJ6qum6vsYOwlKgtZQCJ09iCY0UYQyWQEpYvmsrS5bIu3Jnbp-am5e5Ms3qS_qCevogTvHndkYra68TGBiAyaZUIBFnJCDxmxZtmO-hS2GYqq7g5W0qux4hGos6s98SfSJDTHzf8s-LUn_T1dxm1-uNtl6Dwz5eWfQH7YC0y22MYgu8P4MbrOPMcAbJ-T2Pgf-0MrYoG_5LPMJAuDZfLjN-DOWwTQYteAITPntw-NEXGDOSvz-md-TOBonXc7oF9T5zF-nnHo-xJjo_juqDk7zIYL-n-E3xn7pd9jT1eXjv2vRKyiIWNVKCZlN6VWKkEyV8IFUeUMqTEYYZlKoG6vBhLowIeAKaIyXKuaYLOIyj4VEvctWp7Mp7DFeZym9ona_GBB0gDVgfVZNNkSpKOWIHQ-edW8dUYbDAoPc777cP2IX5POvBcRt3b7AiLs-4u5_ER-xU4qYoxO4nPvo-0ECtJO4rNw52q2IW6wescMhqK4_mguHCLImxptK7_-GNQdsrSJJ4LYn8JCtLufv8BdxyjIctVvyE0xI5eM
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep Feature Selection of Meteorological Variables for LSTM-Based PV Power Forecasting in High-Dimensional Time-Series Data
URI https://www.proquest.com/docview/3243965827
https://doaj.org/article/9cc972a5de8c4e8d8b0e9085fb706618
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagvXABykME2shCSJysZh9-nVBDmlaIVBF9qDfLz4pLNmzSE3-eGcdbeoHbatdarcaemW-84-8j5JMTPEoZJ0wmG1nrWs9cFTSLwUP5LLWsMpH24kKcX7ffbvlt2XDblLbKISbmQB06j3vkx5D4GyQqqeWX9S-GqlH4d7VIaDwl-xVkGlznan42RGLBtah2bEINlPbHtkISxRb5-R_loEzV_6-AnLPM_CV5XuAhPdnN5wF5ElevyItBeoEWT3xNfs9iXFPEb_d9pJdZzAYsTLtEFwCDu36IafQGimE8HrWhAE_p98urBZtC5gp0eUOXKJFGUZ3T2w32P9OfK4qdH2yGpP87wg6Kp0QY7qLBO2Z2a9-Q6_np1ddzVnQUmK8bIRhPqrIi-BhUHeACtXldmKgEYEwF17RaRuWaiXIORsRWWS588kEDOrNQTjRvyd6qW8V3hDaJcyuw6c87gB5Rq6htEm1SSKzI-Yh8HCxr1ju6DANlBprfPJh_RKZo84cByHCdb3T9nSkOY7T3WtaWh6h8G1VQbhI14MPkJKCkSo3IZ5wxg3647a235TgBfCcyWpkT-G6BDGPNiBwOk2qKg27M3-X0_v-PP5BnNUr-5p6_Q7K37e_jEeCQrRvnxTYm-9PTi-WPca7m_wBHJ9-2
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAX3ohAgRUCcVrVz_XuAaGGtEppEkU0rXrb7suISxycVAjxn_iNzPhRuMCtN8u2rNXs7My365nvA3hjRR6KIkS8KE3gmc0ct7FXPHiH2-dCFXFDpD2bi8lZ9ukiv9iBX30vDJVV9jGxCdS-cnRGvo-JPyWikqT4sP7GSTWK_q72EhqtW5yEH99xy7Z5fzzG-X2bJEeHy48T3qkKcJekQvC8lLER3gUvE48XpFRrfSRLhCbS2zRTRZA2jaS1-EbIpMmFK51XiFUMgusUv3sLdjPqaB3A7uhwvvjcx36RKxG3_EVpqqJ9ExNtY0aKAH9lvUYc4F8poMlrR_fhbgdI2UHrQQ9gJ6wewr1e7IF1a_8R_ByHsGaEGK_qwE4b-RycU1aVbIbAu6r7KMrOcftNDVkbhoCYTU-XMz7CXOnZ4pwtSJSNkR6oMxuquGZfV4xqTfiYZAZaihBGfSmczu3wG2OzNY_h7EZs_AQGq2oVngJLyzw3gsoMnUWwE5QMypQiKyVROeb5EF73ltXrlqBD48aGzK-vzT-EEdn8-gXi1G5uVPUX3S1RrZxTRWJyH6TLgvTSRkEhIi1tgbgslkN4RzOmaeVva-NM18CA4yQOLX2A4xbEaZYOYa-fVN2FhI3-48DP_v_4FdyeLGdTPT2enzyHOwkJDjcVh3sw2NZX4QWioK192bkeg8ub9vbf-Y0bwQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAX3oiFAhYCcbKaxLFjHxBqCUtLu9VKfag310_EZbNkt0KIf8avYyaPwgVuvUVJFCXjycw3ycz3EfLaSRGrKmasSjay0pWeuTxoFoOH8rnSVd4Rac-O5N5p-flcnG-QX-MsDLZVjjGxC9Sh8fiNfBsSP0eiEijV09AWMa-n75ffGCpI4Z_WUU6jd5GD-OM7lG-rd_s1rPWboph-PPmwxwaFAeYLLiUTSeVWBh-DKgJsoGqtC5lKAFNUcLzUVVSOZ8o5OCOWygrpkw8acIsFoM3hujfIzQofCqfUp5_GLCCFlnnPZMS5zrZtjgSOJWoD_JX_OpmAfyWDLsNN75E7AzSlO70v3ScbcfGA3B1lH-gQBR6Sn3WMS4rY8bKN9LgT0oHVpU2iM4DgTTvGU3oGhTiOZq0oQGN6eHwyY7uQNQOdn9E5yrNRVAb1doW91_TrgmLXCatRcKAnC6E4ocLwCx5co7Zr-4icXouFH5PNRbOITwjlSQgrseHQO4A9UauobZJlUkjqKMSEvBota5Y9VYeBEgfNb67MPyG7aPOrE5Bdu9vRtF_M8LIa7b2uCitCVL6MKiiXRQ3YNLkKEFquJuQtrpjBGLBurbfDKAPcJ7JpmR24b4nsZnxCtsZFNUNwWJk_rvz0_4dfklvg4-Zw_-jgGbldoPJw13q4RTbX7WV8DnBo7V50fkfJxXU7-m8R2R6R
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Feature+Selection+of+Meteorological+Variables+for+LSTM-Based+PV+Power+Forecasting+in+High-Dimensional+Time-Series+Data&rft.jtitle=Algorithms&rft.au=Husein%2C+Mauladdawilah&rft.au=Balfaqih+Mohammed&rft.au=Zain%2C+Balfagih&rft.au=Pegalajar+Mar%C3%ADa+del+Carmen&rft.date=2025-08-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=18&rft.issue=8&rft.spage=496&rft_id=info:doi/10.3390%2Fa18080496&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon