Deep Feature Selection of Meteorological Variables for LSTM-Based PV Power Forecasting in High-Dimensional Time-Series Data
Accurate photovoltaic (PV) power forecasting is essential for grid integration, particularly in maritime climates with dynamic weather patterns. This study addresses high-dimensional meteorological data challenges by systematically evaluating 32 variables across four categories (solar irradiance, te...
Saved in:
Published in | Algorithms Vol. 18; no. 8; p. 496 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1999-4893 1999-4893 |
DOI | 10.3390/a18080496 |
Cover
Loading…
Abstract | Accurate photovoltaic (PV) power forecasting is essential for grid integration, particularly in maritime climates with dynamic weather patterns. This study addresses high-dimensional meteorological data challenges by systematically evaluating 32 variables across four categories (solar irradiance, temperature, atmospheric, hydrometeorological) for day-ahead PV forecasting using long short-term memory (LSTM) networks. Using six years of data from a 350 kWp solar farm in Scotland, we compare satellite-derived data and local weather station measurements. Surprisingly, downward thermal infrared flux—capturing persistent atmospheric moisture and cloud properties in maritime climates—emerged as the most influential predictor despite low correlation (1.93%). When paired with precipitation data, this two-variable combination achieved 99.81% R2, outperforming complex multi-variable models. Satellite data consistently surpassed ground measurements, with 9 of the top 10 predictors being satellite derived. Our approach reduces model complexity while improving forecasting accuracy, providing practical solutions for energy systems. |
---|---|
AbstractList | Accurate photovoltaic (PV) power forecasting is essential for grid integration, particularly in maritime climates with dynamic weather patterns. This study addresses high-dimensional meteorological data challenges by systematically evaluating 32 variables across four categories (solar irradiance, temperature, atmospheric, hydrometeorological) for day-ahead PV forecasting using long short-term memory (LSTM) networks. Using six years of data from a 350 kWp solar farm in Scotland, we compare satellite-derived data and local weather station measurements. Surprisingly, downward thermal infrared flux—capturing persistent atmospheric moisture and cloud properties in maritime climates—emerged as the most influential predictor despite low correlation (1.93%). When paired with precipitation data, this two-variable combination achieved 99.81% R[sup.2], outperforming complex multi-variable models. Satellite data consistently surpassed ground measurements, with 9 of the top 10 predictors being satellite derived. Our approach reduces model complexity while improving forecasting accuracy, providing practical solutions for energy systems. Accurate photovoltaic (PV) power forecasting is essential for grid integration, particularly in maritime climates with dynamic weather patterns. This study addresses high-dimensional meteorological data challenges by systematically evaluating 32 variables across four categories (solar irradiance, temperature, atmospheric, hydrometeorological) for day-ahead PV forecasting using long short-term memory (LSTM) networks. Using six years of data from a 350 kWp solar farm in Scotland, we compare satellite-derived data and local weather station measurements. Surprisingly, downward thermal infrared flux—capturing persistent atmospheric moisture and cloud properties in maritime climates—emerged as the most influential predictor despite low correlation (1.93%). When paired with precipitation data, this two-variable combination achieved 99.81% R2, outperforming complex multi-variable models. Satellite data consistently surpassed ground measurements, with 9 of the top 10 predictors being satellite derived. Our approach reduces model complexity while improving forecasting accuracy, providing practical solutions for energy systems. |
Audience | Academic |
Author | Balfagih, Zain Pegalajar, María del Carmen Gago, Eulalia Jadraque Mauladdawilah, Husein Balfaqih, Mohammed |
Author_xml | – sequence: 1 givenname: Husein orcidid: 0000-0002-2828-6173 surname: Mauladdawilah fullname: Mauladdawilah, Husein – sequence: 2 givenname: Mohammed orcidid: 0000-0002-6498-2408 surname: Balfaqih fullname: Balfaqih, Mohammed – sequence: 3 givenname: Zain surname: Balfagih fullname: Balfagih, Zain – sequence: 4 givenname: María del Carmen orcidid: 0000-0001-9408-6770 surname: Pegalajar fullname: Pegalajar, María del Carmen – sequence: 5 givenname: Eulalia Jadraque orcidid: 0000-0002-3547-2003 surname: Gago fullname: Gago, Eulalia Jadraque |
BookMark | eNpNkUFrGzEQhUVJoUnaQ_-BoKceNpVWK1k6pnGdBBwasJurmJVGW5n1ypXWlNI_H7UuocxhHsObjxneBTmb0oSEvOfsSgjDPgHXTLPOqFfknBtjmk4bcfaffkMuStkxpqRR_Jz8XiIe6AphPmakGxzRzTFNNAX6gDOmnMY0RAcjfYIcoR-x0JAyXW-2D81nKOjp4xN9TD8x01XK6KDMcRponOhdHL43y7jHqVRiJWyrbjaYY2UsYYa35HWAseC7f_2SfFt92d7cNeuvt_c31-vGtUKpRgbNQXmHXre-ik5y1XumQ8eV9r3ozAJ1L5ju--rAToNULjhvtJAgtRSX5P7E9Ql29pDjHvIvmyDav4OUBwt5jm5Ea5wzixakR-061F73DA3TMvQLphTXlfXhxDrk9OOIZba7dMz1u2JF2wmjpG4X1XV1cg1QoXEKac7ganncR1cTC7HOr-ttijEpRV34eFpwOZWSMbycyZn9E6x9CVY8A7jNlhI |
Cites_doi | 10.1016/j.epsr.2022.108796 10.1016/j.energy.2021.122116 10.1016/j.egyr.2020.11.238 10.1016/j.egyr.2022.11.208 10.18086/swc.2015.07.06 10.3390/en16134857 10.1007/s00202-023-01883-7 10.1109/ICCIT58132.2023.10273892 10.1016/j.heliyon.2024.e33419 10.1016/j.energy.2016.08.068 10.1109/LT64002.2025.10941436 10.1016/j.ijthermalsci.2023.108672 10.1016/j.energy.2021.120996 10.1016/j.epsr.2022.107908 10.1016/j.energy.2014.01.024 10.1016/j.energy.2016.08.060 10.1016/j.renene.2023.118997 10.1016/j.apenergy.2020.116239 10.3390/atmos12010124 10.1016/j.rser.2022.112364 10.1016/j.renene.2020.01.150 10.1162/neco.1997.9.8.1735 10.1109/ICCIT63348.2025.10989356 10.1016/j.renene.2019.12.131 10.1016/j.ijforecast.2006.03.001 10.1109/PVSC40753.2019.8981308 10.5194/gmd-7-1247-2014 10.3390/su151411299 10.54963/neea.v2i2.170 10.1016/j.solener.2021.04.004 10.1109/ACCESS.2024.3420693 10.1109/ASET53988.2022.9734967 10.1109/ICDSE.2016.7823957 10.1016/j.egypro.2013.05.072 10.3390/app11010316 10.1007/s12145-023-01066-9 10.1016/j.renene.2024.120437 10.3390/en13040930 10.7717/peerj-cs.623 10.1016/S0169-2070(96)00719-4 10.2514/6.2022-1101 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U DOA |
DOI | 10.3390/a18080496 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1999-4893 |
ExternalDocumentID | oai_doaj_org_article_9cc972a5de8c4e8d8b0e9085fb706618 A853600553 10_3390_a18080496 |
GeographicLocations | United Kingdom New Jersey |
GeographicLocations_xml | – name: United Kingdom – name: New Jersey |
GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS TR2 TUS PUEGO 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI Q9U |
ID | FETCH-LOGICAL-c2366-5f81a6dced82da6d4516bd08f4168db3497e8b308bbd82e48a56cfcd9835a5853 |
IEDL.DBID | 8FG |
ISSN | 1999-4893 |
IngestDate | Mon Sep 01 19:39:27 EDT 2025 Wed Aug 27 12:54:55 EDT 2025 Tue Sep 02 04:00:06 EDT 2025 Thu Aug 14 00:05:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2366-5f81a6dced82da6d4516bd08f4168db3497e8b308bbd82e48a56cfcd9835a5853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6498-2408 0000-0001-9408-6770 0000-0002-2828-6173 0000-0002-3547-2003 |
OpenAccessLink | https://www.proquest.com/docview/3243965827?pq-origsite=%requestingapplication% |
PQID | 3243965827 |
PQPubID | 2032439 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9cc972a5de8c4e8d8b0e9085fb706618 proquest_journals_3243965827 gale_infotracacademiconefile_A853600553 crossref_primary_10_3390_a18080496 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Algorithms |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Mauladdawilah (ref_43) 2025; Volume 22 Markovics (ref_5) 2022; 161 Zhang (ref_12) 2022; 213 Hyndman (ref_37) 2006; 22 ref_14 ref_11 Chai (ref_36) 2014; 7 Mbuli (ref_31) 2020; 6 Chicco (ref_38) 2021; 7 ref_30 ref_19 Husein (ref_35) 2024; 10 Galarza (ref_9) 2022; 239 Mayer (ref_3) 2021; 283 ref_39 ref_16 Staffell (ref_25) 2016; 114 Asghar (ref_18) 2024; 12 Sharadga (ref_4) 2020; 150 Harvey (ref_44) 1997; 13 AlSkaif (ref_13) 2020; 153 Bahanni (ref_17) 2022; 25 Muneer (ref_23) 2022; 2 Hochreiter (ref_33) 1997; 9 Ziane (ref_2) 2021; 220 Dubey (ref_28) 2013; 33 Agga (ref_10) 2022; 208 Grzebyk (ref_7) 2023; 9 ref_21 ref_20 ref_42 ref_41 Bai (ref_8) 2023; 16 ref_1 Qu (ref_40) 2021; 232 Garip (ref_34) 2023; 105 Liu (ref_32) 2024; 226 Saglam (ref_15) 2010; 9 ref_29 Chenlo (ref_27) 2014; 67 ref_26 Villemin (ref_22) 2024; 195 Pfenninger (ref_24) 2016; 114 Sarmas (ref_6) 2023; 216 |
References_xml | – volume: 213 start-page: 108796 year: 2022 ident: ref_12 article-title: A novel integrated photovoltaic power forecasting model based on variational mode decomposition and CNN-BiGRU considering meteorological variables publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2022.108796 – volume: 239 start-page: 122116 year: 2022 ident: ref_9 article-title: Using deep learning and meteorological parameters to forecast the photovoltaic generators intra-hour output power interval for smart grid control publication-title: Energy doi: 10.1016/j.energy.2021.122116 – volume: 6 start-page: 298 year: 2020 ident: ref_31 article-title: Decomposition forecasting methods: A review of applications in power systems publication-title: Energy Rep. doi: 10.1016/j.egyr.2020.11.238 – volume: 9 start-page: 447 year: 2023 ident: ref_7 article-title: Trends and gaps in photovoltaic power forecasting with machine learning publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.11.208 – ident: ref_21 doi: 10.18086/swc.2015.07.06 – ident: ref_26 – ident: ref_29 doi: 10.3390/en16134857 – volume: 105 start-page: 3329 year: 2023 ident: ref_34 article-title: Day-ahead solar photovoltaic energy forecasting based on weather data using LSTM networks: A comparative study for photovoltaic (PV) panels in Turkey publication-title: Electr. Eng. doi: 10.1007/s00202-023-01883-7 – ident: ref_11 doi: 10.1109/ICCIT58132.2023.10273892 – volume: 10 start-page: e33419 year: 2024 ident: ref_35 article-title: Towards energy efficiency: A comprehensive review of deep learning-based photovoltaic power forecasting strategies publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e33419 – volume: 114 start-page: 1224 year: 2016 ident: ref_25 article-title: Using bias-corrected reanalysis to simulate current and future wind power output publication-title: Energy doi: 10.1016/j.energy.2016.08.068 – volume: Volume 22 start-page: 109 year: 2025 ident: ref_43 article-title: Optimization of Photovoltaic Power Forecasting: A Comparative Study of Deep Learning Architectures, Optimization Techniques, and Evaluation Metrics publication-title: Proceedings of the 2025 22nd International Learning and Technology Conference (L&T) doi: 10.1109/LT64002.2025.10941436 – volume: 25 start-page: 1275 year: 2022 ident: ref_17 article-title: Performance comparison and impact of weather conditions on different photovoltaic modules in two different cities publication-title: Indones. J. Electr. Eng. Comput. Sci. – volume: 9 start-page: 637 year: 2010 ident: ref_15 article-title: Meteorological parameters effects on solar energy power generation publication-title: WSEAS Trans. Circuits Syst. – volume: 195 start-page: 108672 year: 2024 ident: ref_22 article-title: Monte Carlo prediction of the energy performance of a photovoltaic panel using detailed meteorological input data publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2023.108672 – volume: 232 start-page: 120996 year: 2021 ident: ref_40 article-title: Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern publication-title: Energy doi: 10.1016/j.energy.2021.120996 – volume: 208 start-page: 107908 year: 2022 ident: ref_10 article-title: CNN-LSTM: An efficient hybrid deep learning architecture for predicting short-term photovoltaic power production publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2022.107908 – volume: 67 start-page: 435 year: 2014 ident: ref_27 article-title: Analysis of spectral effects on the energy yield of different PV (photovoltaic) technologies: The case of four specific sites publication-title: Energy doi: 10.1016/j.energy.2014.01.024 – volume: 114 start-page: 1251 year: 2016 ident: ref_24 article-title: Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data publication-title: Energy doi: 10.1016/j.energy.2016.08.060 – volume: 216 start-page: 118997 year: 2023 ident: ref_6 article-title: Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent Long Short-Term Memory models publication-title: Renew. Energy doi: 10.1016/j.renene.2023.118997 – volume: 283 start-page: 116239 year: 2021 ident: ref_3 article-title: Extensive comparison of physical models for photovoltaic power forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.116239 – ident: ref_41 doi: 10.3390/atmos12010124 – volume: 161 start-page: 112364 year: 2022 ident: ref_5 article-title: Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2022.112364 – volume: 153 start-page: 12 year: 2020 ident: ref_13 article-title: A systematic analysis of meteorological variables for PV output power estimation publication-title: Renew. Energy doi: 10.1016/j.renene.2020.01.150 – volume: 9 start-page: 1735 year: 1997 ident: ref_33 article-title: Long Short-Term Memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: ref_42 doi: 10.1109/ICCIT63348.2025.10989356 – volume: 150 start-page: 797 year: 2020 ident: ref_4 article-title: Time series forecasting of solar power generation for large-scale photovoltaic plants publication-title: Renew. Energy doi: 10.1016/j.renene.2019.12.131 – volume: 22 start-page: 679 year: 2006 ident: ref_37 article-title: Another look at measures of forecast accuracy publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2006.03.001 – ident: ref_20 doi: 10.1109/PVSC40753.2019.8981308 – volume: 7 start-page: 1247 year: 2014 ident: ref_36 article-title: Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature publication-title: Geosci. Model Dev. doi: 10.5194/gmd-7-1247-2014 – ident: ref_19 doi: 10.3390/su151411299 – volume: 2 start-page: 30 year: 2022 ident: ref_23 article-title: Assessing the Energy Generation and Economics of Combined Solar PV and Wind Turbine-Based Systems with and without Energy Storage—Scottish Perspective publication-title: New Energy Exploit. Appl. doi: 10.54963/neea.v2i2.170 – volume: 220 start-page: 745 year: 2021 ident: ref_2 article-title: Photovoltaic output power performance assessment and forecasting: Impact of meteorological variables publication-title: Sol. Energy doi: 10.1016/j.solener.2021.04.004 – volume: 12 start-page: 90461 year: 2024 ident: ref_18 article-title: Artificial neural networks for photovoltaic power forecasting: A review of five promising models publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3420693 – ident: ref_16 doi: 10.1109/ASET53988.2022.9734967 – ident: ref_30 doi: 10.1109/ICDSE.2016.7823957 – volume: 33 start-page: 311 year: 2013 ident: ref_28 article-title: Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World–A Review publication-title: Energy Procedia doi: 10.1016/j.egypro.2013.05.072 – ident: ref_39 doi: 10.3390/app11010316 – volume: 16 start-page: 2741 year: 2023 ident: ref_8 article-title: Accurate four-hour-ahead probabilistic forecast of photovoltaic power generation based on multiple meteorological variables-aided intelligent optimization of numeric weather prediction data publication-title: Earth Sci. Inform. doi: 10.1007/s12145-023-01066-9 – volume: 226 start-page: 120437 year: 2024 ident: ref_32 article-title: Short-term photovoltaic power forecasting with feature extraction and attention mechanisms publication-title: Renew. Energy doi: 10.1016/j.renene.2024.120437 – ident: ref_1 doi: 10.3390/en13040930 – volume: 7 start-page: e623 year: 2021 ident: ref_38 article-title: The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.623 – volume: 13 start-page: 281 year: 1997 ident: ref_44 article-title: Testing the equality of prediction mean squared errors publication-title: Int. J. Forecast. doi: 10.1016/S0169-2070(96)00719-4 – ident: ref_14 doi: 10.2514/6.2022-1101 |
SSID | ssj0065961 |
Score | 2.345191 |
Snippet | Accurate photovoltaic (PV) power forecasting is essential for grid integration, particularly in maritime climates with dynamic weather patterns. This study... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 496 |
SubjectTerms | Accuracy Algorithms Alternative energy sources Artificial intelligence Atmospheric moisture Climate Complexity Correlation analysis deep learning Efficiency Feature selection Forecasting Ground stations Humidity Hydrometeorology International economic relations Irradiance long short-term memory Machine learning mean absolute Meteorological data Meteorological research meteorological variables Photovoltaic cells Radiation Research methodology Solar energy Solar energy industry Solar farms Solar power generation Statistical methods Variables Weather stations |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSywxEA7iyYv6XHDUJ0EET8Hesh31jSLiiOCCt5ClAl5mZGY8-eet6kW8yLt4a5rQFFVJ6qum6vsYOwlKgtZQCJ09iCY0UYQyWQEpYvmsrS5bIu3Jnbp-am5e5Ms3qS_qCevogTvHndkYra68TGBiAyaZUIBFnJCDxmxZtmO-hS2GYqq7g5W0qux4hGos6s98SfSJDTHzf8s-LUn_T1dxm1-uNtl6Dwz5eWfQH7YC0y22MYgu8P4MbrOPMcAbJ-T2Pgf-0MrYoG_5LPMJAuDZfLjN-DOWwTQYteAITPntw-NEXGDOSvz-md-TOBonXc7oF9T5zF-nnHo-xJjo_juqDk7zIYL-n-E3xn7pd9jT1eXjv2vRKyiIWNVKCZlN6VWKkEyV8IFUeUMqTEYYZlKoG6vBhLowIeAKaIyXKuaYLOIyj4VEvctWp7Mp7DFeZym9ona_GBB0gDVgfVZNNkSpKOWIHQ-edW8dUYbDAoPc777cP2IX5POvBcRt3b7AiLs-4u5_ER-xU4qYoxO4nPvo-0ECtJO4rNw52q2IW6wescMhqK4_mguHCLImxptK7_-GNQdsrSJJ4LYn8JCtLufv8BdxyjIctVvyE0xI5eM priority: 102 providerName: Directory of Open Access Journals |
Title | Deep Feature Selection of Meteorological Variables for LSTM-Based PV Power Forecasting in High-Dimensional Time-Series Data |
URI | https://www.proquest.com/docview/3243965827 https://doaj.org/article/9cc972a5de8c4e8d8b0e9085fb706618 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagvXABykME2shCSJysZh9-nVBDmlaIVBF9qDfLz4pLNmzSE3-eGcdbeoHbatdarcaemW-84-8j5JMTPEoZJ0wmG1nrWs9cFTSLwUP5LLWsMpH24kKcX7ffbvlt2XDblLbKISbmQB06j3vkx5D4GyQqqeWX9S-GqlH4d7VIaDwl-xVkGlznan42RGLBtah2bEINlPbHtkISxRb5-R_loEzV_6-AnLPM_CV5XuAhPdnN5wF5ElevyItBeoEWT3xNfs9iXFPEb_d9pJdZzAYsTLtEFwCDu36IafQGimE8HrWhAE_p98urBZtC5gp0eUOXKJFGUZ3T2w32P9OfK4qdH2yGpP87wg6Kp0QY7qLBO2Z2a9-Q6_np1ddzVnQUmK8bIRhPqrIi-BhUHeACtXldmKgEYEwF17RaRuWaiXIORsRWWS588kEDOrNQTjRvyd6qW8V3hDaJcyuw6c87gB5Rq6htEm1SSKzI-Yh8HCxr1ju6DANlBprfPJh_RKZo84cByHCdb3T9nSkOY7T3WtaWh6h8G1VQbhI14MPkJKCkSo3IZ5wxg3647a235TgBfCcyWpkT-G6BDGPNiBwOk2qKg27M3-X0_v-PP5BnNUr-5p6_Q7K37e_jEeCQrRvnxTYm-9PTi-WPca7m_wBHJ9-2 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAX3ohAgRUCcVrVz_XuAaGGtEppEkU0rXrb7suISxycVAjxn_iNzPhRuMCtN8u2rNXs7My365nvA3hjRR6KIkS8KE3gmc0ct7FXPHiH2-dCFXFDpD2bi8lZ9ukiv9iBX30vDJVV9jGxCdS-cnRGvo-JPyWikqT4sP7GSTWK_q72EhqtW5yEH99xy7Z5fzzG-X2bJEeHy48T3qkKcJekQvC8lLER3gUvE48XpFRrfSRLhCbS2zRTRZA2jaS1-EbIpMmFK51XiFUMgusUv3sLdjPqaB3A7uhwvvjcx36RKxG3_EVpqqJ9ExNtY0aKAH9lvUYc4F8poMlrR_fhbgdI2UHrQQ9gJ6wewr1e7IF1a_8R_ByHsGaEGK_qwE4b-RycU1aVbIbAu6r7KMrOcftNDVkbhoCYTU-XMz7CXOnZ4pwtSJSNkR6oMxuquGZfV4xqTfiYZAZaihBGfSmczu3wG2OzNY_h7EZs_AQGq2oVngJLyzw3gsoMnUWwE5QMypQiKyVROeb5EF73ltXrlqBD48aGzK-vzT-EEdn8-gXi1G5uVPUX3S1RrZxTRWJyH6TLgvTSRkEhIi1tgbgslkN4RzOmaeVva-NM18CA4yQOLX2A4xbEaZYOYa-fVN2FhI3-48DP_v_4FdyeLGdTPT2enzyHOwkJDjcVh3sw2NZX4QWioK192bkeg8ub9vbf-Y0bwQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAX3oiFAhYCcbKaxLFjHxBqCUtLu9VKfag310_EZbNkt0KIf8avYyaPwgVuvUVJFCXjycw3ycz3EfLaSRGrKmasSjay0pWeuTxoFoOH8rnSVd4Rac-O5N5p-flcnG-QX-MsDLZVjjGxC9Sh8fiNfBsSP0eiEijV09AWMa-n75ffGCpI4Z_WUU6jd5GD-OM7lG-rd_s1rPWboph-PPmwxwaFAeYLLiUTSeVWBh-DKgJsoGqtC5lKAFNUcLzUVVSOZ8o5OCOWygrpkw8acIsFoM3hujfIzQofCqfUp5_GLCCFlnnPZMS5zrZtjgSOJWoD_JX_OpmAfyWDLsNN75E7AzSlO70v3ScbcfGA3B1lH-gQBR6Sn3WMS4rY8bKN9LgT0oHVpU2iM4DgTTvGU3oGhTiOZq0oQGN6eHwyY7uQNQOdn9E5yrNRVAb1doW91_TrgmLXCatRcKAnC6E4ocLwCx5co7Zr-4icXouFH5PNRbOITwjlSQgrseHQO4A9UauobZJlUkjqKMSEvBota5Y9VYeBEgfNb67MPyG7aPOrE5Bdu9vRtF_M8LIa7b2uCitCVL6MKiiXRQ3YNLkKEFquJuQtrpjBGLBurbfDKAPcJ7JpmR24b4nsZnxCtsZFNUNwWJk_rvz0_4dfklvg4-Zw_-jgGbldoPJw13q4RTbX7WV8DnBo7V50fkfJxXU7-m8R2R6R |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Feature+Selection+of+Meteorological+Variables+for+LSTM-Based+PV+Power+Forecasting+in+High-Dimensional+Time-Series+Data&rft.jtitle=Algorithms&rft.au=Husein%2C+Mauladdawilah&rft.au=Balfaqih+Mohammed&rft.au=Zain%2C+Balfagih&rft.au=Pegalajar+Mar%C3%ADa+del+Carmen&rft.date=2025-08-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=18&rft.issue=8&rft.spage=496&rft_id=info:doi/10.3390%2Fa18080496&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |