Adaptive simplified surge-heading tracking control for underwater vehicles with thruster’s dead-zone compensation

Remotely operated underwater vehicles are usually equipped with four horizontal thrusters that form an X-shaped actuation configuration. Yet, thruster’s inherent dead-zone may possibly result in strong chatter of moment inputs and motion tracking of underwater vehicles. This paper proposes a two-lay...

Full description

Saved in:
Bibliographic Details
Published inNonlinear dynamics Vol. 111; no. 14; pp. 13073 - 13088
Main Authors Yu, Caoyang, Zhong, Yiming, Lian, Lian, Xiang, Xianbo
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.07.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Remotely operated underwater vehicles are usually equipped with four horizontal thrusters that form an X-shaped actuation configuration. Yet, thruster’s inherent dead-zone may possibly result in strong chatter of moment inputs and motion tracking of underwater vehicles. This paper proposes a two-layer cascade tracking controller together with a dead-zone compensator, in order to achieve simplified and effective surge-heading control of underwater vehicles equipped with an X-shaped horizontal actuation configuration. For the sake of brevity, the surge and heading dynamics are firstly unified as a second-order dynamic system where the known and unknown parts are separated, respectively. Based on this model, a feedback linearization control law with a combined error measure is designed in the first-layer cascade system for the simplified dynamics tracking. Then, a reduced-order extended state observer without using any priori knowledge of uncertainties is utilized in the second-layer cascade system to estimate the complex uncertainty of the dynamics. It is noted that this two-layer tracking controller has only two gains to be adjusted, ensuring a simple calculation and microprogramming. Subsequently, a dedicated dead-zone compensator is proposed for the X-shaped actuation configuration and the input-to-state stability of the whole tracking system is analyzed. Finally, comparative numerical cases are provided to demonstrate the adaptivity and robustness of the designed surge-heading tracking controller, i.e., up to 56% reduction of the maximum surge tracking error owing to this dead-zone compensator and less than 0.03 ∘ of the heading steady state error against different initial states.
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-023-08512-9