Deterministic Gradient-Descent Learning of Linear Regressions: Adaptive Algorithms, Convergence Analysis and Noise Compensation

Weight learning forms a basis for the machine learning and numerous algorithms have been adopted up to date. Most of the algorithms were either developed in the stochastic framework or aimed at minimization of loss or regret functions. Asymptotic convergence of weight learning, vital for good output...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 46; no. 12; pp. 7867 - 7877
Main Authors Liu, Kang-Zhi, Gan, Chao
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Weight learning forms a basis for the machine learning and numerous algorithms have been adopted up to date. Most of the algorithms were either developed in the stochastic framework or aimed at minimization of loss or regret functions. Asymptotic convergence of weight learning, vital for good output prediction, was seldom guaranteed for online applications. Since linear regression is the most fundamental component in machine learning, we focus on this model in this paper. Aiming at online applications, a deterministic analysis method is developed based on LaSalle's invariance principle. Convergence conditions are derived for both the first-order and the second-order learning algorithms, without resorting to any stochastic argument. Moreover, the deterministic approach makes it easy to analyze the noise influence. Specifically, adaptive hyperparameters are derived in this framework and their tuning rules disclosed for the compensation of measurement noise. Comparison with four most popular algorithms validates that this approach has a higher learning capability and is quite promising in enhancing the weight learning performance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0162-8828
1939-3539
1939-3539
2160-9292
DOI:10.1109/TPAMI.2024.3399312