Inhibition of glycogen synthase kinase-3β protects dopaminergic neurons from MPTP toxicity
Glycogen synthase kinase-3β (GSK-3β) is closely involved in neuronal apoptosis and pathogenesis of many neurodegenerative diseases, such as Alzheimer's disease. However, whether GSK-3β mediates apoptosis of dopaminergic neurons in Parkinson's disease remains elusive. In this study, using 1...
Saved in:
Published in | Neuropharmacology Vol. 52; no. 8; pp. 1678 - 1684 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2007
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Glycogen synthase kinase-3β (GSK-3β) is closely involved in neuronal apoptosis and pathogenesis of many neurodegenerative diseases, such as Alzheimer's disease. However, whether GSK-3β mediates apoptosis of dopaminergic neurons in Parkinson's disease remains elusive. In this study, using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism models, we investigated whether MPTP induces apoptosis of dopaminergic neurons through a GSK-3β-dependent pathway. MPTP caused a rapid activation of GSK-3β, evidenced by the decrease in level of phospho-Ser9 of GSK-3β and the increase in level of phospho-Ser396 of tau, a known GSK-3β substrate. Blockage of GSK-3β activity by its two specific inhibitors, indirubin-3′-oxime and AR-A014418, prevented dopaminergic neurons from MPTP-induced apoptosis. Additionally, inhibition of GSK-3β activity restored the depletion of striatal dopamine and ameliorated behavioral impairments caused by MPTP. These results indicate that GSK-3β is a critical intermediate of MPTP neurotoxicity, and inhibition of GSK-3β may provide a novel strategy to treat Parkinson's disease. |
---|---|
ISSN: | 0028-3908 1873-7064 |
DOI: | 10.1016/j.neuropharm.2007.03.017 |