Bandgap engineering in massive-massless graphene superlattices
Bandgap engineering in graphene has become a fervent subject of research due to its relevance in technological applications. In this work, we proposed massive-massless graphene superlattices (MMGSLs) to tune the angle-dependent transmission properties. We have considered breaking symmetry substrates...
Saved in:
Published in | Physica. B, Condensed matter Vol. 640; p. 414052 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Bandgap engineering in graphene has become a fervent subject of research due to its relevance in technological applications. In this work, we proposed massive-massless graphene superlattices (MMGSLs) to tune the angle-dependent transmission properties. We have considered breaking symmetry substrates to generate massive and massless regions. We report an angular dependence of the transmission gaps and minibands as a function of the angle of incidence of the Dirac electrons in MMGSLs. Our results show that the transmission gaps and minibands have a trigonometric angular dependence based on the secant in the entire transmission energy range. In addition, the transmission gaps and minibands are well-defined at normal incidence, in contrast to gated graphene superlattices. These findings indicate that MMGSLs could be a possibility for bandgap engineering in graphene. |
---|---|
ISSN: | 0921-4526 1873-2135 |
DOI: | 10.1016/j.physb.2022.414052 |