Effects of intrauterine growth restriction on Ca2+-activated force and contractile protein expression in the mesenteric artery of 1-year-old Wistar-Kyoto rats

Intrauterine growth restriction (IUGR) affects vascular reactivity in older rats, but at present the causative factors for this change are unknown. Therefore, we investigated downstream events associated with vascular reactivity, specifically, Ca 2+ -regulated force production and shifts in contract...

Full description

Saved in:
Bibliographic Details
Published inJournal of physiology and biochemistry Vol. 76; no. 1; pp. 111 - 121
Main Authors Christie, Michael J., Romano, Tania, Murphy, Robyn M., Posterino, Giuseppe S.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.02.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Intrauterine growth restriction (IUGR) affects vascular reactivity in older rats, but at present the causative factors for this change are unknown. Therefore, we investigated downstream events associated with vascular reactivity, specifically, Ca 2+ -regulated force production and shifts in contractile protein content. The mesenteric artery from male and female 1-year-old Wistar-Kyoto rats was examined using two distinct experimental growth restriction models. Uterine ligation surgery restriction or a sham surgery was conducted at day 18 of pregnancy, whilst a food restriction diet (40% control diet) began on gestational day 15. Extracellular vascular reactivity was studied using intact mesenteric arteries, which were subsequently chemically permeabilized using 50 μM β-escin to examine Ca 2+ -activated force. Peak contractile responses to a K + -induced depolarization and phenylephrine were significantly elevated due to an increase in maximum Ca 2+ -activated force in the male surgery restricted group. No changes in contractile forces were reported between female experimental groups. Sections of mesenteric artery were examined using western blotting, revealing IUGR increased the relative abundance of the voltage-gated Ca 2+ channel, inositol-1,4,5-trisphosphate receptor and myosin light chain kinase, in both male growth restricted groups, whereas no changes were seen in females. These findings demonstrate for the first time in 1-year-old rats that changes in vascular reactivity due to IUGR are caused by a change in Ca 2+ -activated force and shifts in important contractile protein content. These changes affect the Wistar-Kyoto rat in a sex-specific and maternal insult-dependent manner.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1138-7548
1877-8755
DOI:10.1007/s13105-020-00724-6