Enhanced azo dye reduction at semiconductor-microbe interface: The key role of semiconductor band structure

Low-energy environmental remediation could be achieved by biocatalysis with assistance of light-excited semiconductor, in which the energy band structure of semiconductor has a significant influence on the metabolic process and electron transfer of microbes. In this study, direct Z-scheme and type I...

Full description

Saved in:
Bibliographic Details
Published inWater research (Oxford) Vol. 248; p. 120846
Main Authors Shi, Hefei, Jiang, Xinbai, Wen, Xiaojiao, Hou, Cheng, Chen, Dan, Mu, Yang, Shen, Jinyou
Format Journal Article
LanguageEnglish
Published 01.01.2024
Online AccessGet full text

Cover

Loading…
More Information
Summary:Low-energy environmental remediation could be achieved by biocatalysis with assistance of light-excited semiconductor, in which the energy band structure of semiconductor has a significant influence on the metabolic process and electron transfer of microbes. In this study, direct Z-scheme and type II heterojunction semiconductor with different energy band structure were successfully synthesized for constructing semiconductor-microbe interface with Shewanella oneidensis MR-1 to achieve acid orange7 (AO7) biodegradation. UV-vis diffuse reflection spectroscopy, photoluminescence spectra and photoelectrochemical analysis revealed that the direct Z-scheme heterojunction semiconductor had stronger reduction power and faster separation of photoelectron-hole, which was beneficial for the AO7 biodegradation at semiconductor-microbe interface. Riboflavin was also involved in electron transfer between the semiconductor and microbes during AO7 reduction. Transcriptome results illustrated that functional gene expression of Shewanella oneidensis MR-1 was upregulated significantly with photo-stimulation of direct Z-scheme semiconductor, and Mtr pathway and conductive pili played the important roles in the photoelectron utilization by Shewanella oneidensis MR-1. This work is expected to provide alternative ideas for designing semiconductor-microbial interface with efficient electron transfer and broadening their applications in bioremediation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0043-1354
1879-2448
DOI:10.1016/j.watres.2023.120846