Surface-enhanced Raman spectroscopy of organic molecules adsorbed on metallic nanoparticles
The improvements in Raman instrumentation have led to the development of -portable, simple to operate, Raman instruments that can be used for on-site analysis of substances relevant for homeland security purposes such as chemical and biological warfare and explosives materials.Raman spectroscopy, ho...
Saved in:
Published in | Advances in experimental medicine and biology Vol. 733; p. 53 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
01.01.2012
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | The improvements in Raman instrumentation have led to the development of -portable, simple to operate, Raman instruments that can be used for on-site analysis of substances relevant for homeland security purposes such as chemical and biological warfare and explosives materials.Raman spectroscopy, however, suffers from limited sensitivity which can be overcome by Surface-Enhanced Raman Spectroscopy (SERS). SERS can enhance the Raman signal of a target molecule by 6-10 orders of magnitude. The increased sensitivity, together with Raman's molecular recognition capabilities and the availability of portable Raman instruments make SERS a powerful analytical tool for on site detection.In this work we studied the effect of target molecules and SERS-active substrate properties on the obtained SERS, using a field portable Raman spectrometer. Also reported herein is the SERS detection of the chemical warfare agent sulfur mustard (HD, 2,2 dichloroethyl sulfide). This study may serve as a basis for the development of SERS platform for homeland security purposes. |
---|---|
ISSN: | 0065-2598 |
DOI: | 10.1007/978-94-007-2555-3_6 |