Properties of two multisubstate Cl- channels from human syncytiotrophoblast reconstituted on planar lipid bilayers
We describe the first successful reconstitution of placental ionic channels on planar lipid bilayers. An apical plasma membrane-enriched vesicle fraction from human syncytiotrophoblast at term was prepared by following isotonic agitation, differential centrifugation, and Mg2+-induced selective preci...
Saved in:
Published in | The Journal of membrane biology Vol. 157; no. 1; pp. 83 - 95 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Springer Nature B.V
01.05.1997
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We describe the first successful reconstitution of placental ionic channels on planar lipid bilayers. An apical plasma membrane-enriched vesicle fraction from human syncytiotrophoblast at term was prepared by following isotonic agitation, differential centrifugation, and Mg2+-induced selective precipitation of nonapical membranes, and its purity was assessed by biochemical and morphological marker analysis. We have already reported that, unlike previous patch-clamp studies, nonselective cation channels were incorporated in most cases, a result consistent with the higher permeability for cations as compared with Cl- and with the low apical membrane potential difference at term revealed by fluorescent probe partition studies, and microelectrode techniques. In this paper, we report that Cl--selective channels were incorporated in 4% of successful reconstitutions (14 out of 353) and that their analysis revealed two types of activity. One of them was consistent with a voltage-dependent, 100-pS channel while the other was consistent with the lateral association of 47-pS conductive units, giving rise to multibarrelled, DIDS-sensitive channels of variable conductance (300 to 650 pS). The latter displayed a very complex behavior which included cooperative gating of conductive units, long-lived substates, voltage-dependent entry into an apparent inactivated state, and flickering activity. The role of the reported Cl- channels in transplacental ion transport and/or syncytium homeostasis remains to be determined. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-2631 1432-1424 |
DOI: | 10.1007/s002329900218 |